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Fault-tolerant Wait-free Shared Objects*t

Prasad Jayanti Tushar Deepak Chandral Sam Toueg

{prasad, chandra, sam} @cs.cornell.edu
Department of Computer Science

Cornell University
Ithaca, New York 14853

August 21, 1992

Abstract

A concurrent system consists of processes and shared objects. Previous research
focused on the problem of tolerating process failures. We study the complementary
problem of tolerating object failures.

We divide object failures into two broad classes: responsive and non-responsive.
With responsive failures, a faulty object responds to every invocation, but responses
may be incorrect. With non-responsive failures, a faulty object may also "hang" without
responding. For each class, we consider crash, omission, and arbitrary types of failures.

For each type of failure, we are seeking a universal implementation for fault-tolerant
wait-free shared objects. We present (deterministic) implementations for all types of
responsive failures, including arbitrary failures. In contrast, we show that even the most
benign type of non-responsive failures requires the use of randomization.

Of special interest is the problem of implementing fault-tolerant objects using only
objects of the same type. We present such fault-tolerant self-implementations for many
common object types.

Graceul degradation is a desirable property of fault-tolerant implementations: the
implemented object never fails more severely than the base objects it is derived from.
even if all the base objects fail. For several failure models, we show whether this
property can be achieved, and, if so, how.

In addition to the above possibility/impossibility results, we also consider the re-
source complexity of fault-tolerant implementations. In many cases, we present lower
bounds and give matching algorithms.

*A preliminary version of this will appear in the proceedings of the 33rd Annual Symposium on Founda-
tions of Computer Science, October, 1992.

tResearch supported by NSF grants CCR-8901780 and CCR-9102231, DARPA/NASA Ames grant NAG-
2-593, grants from the IBM Endicott Programming Laboratory.

tAlso supported by an IBM graduate fellowship.



1 Introduction

1.1 Background and motivation

A concurrent system consists of processes communicating via shared objects. Examples
of shared object types include data structures such as read/write register, queue, and
set, and synchronization primitives such as test&set, fetch&add, and compare&swap.
Even though different processes may concurrently access a shared object, the object must
behave as if all these accesses occur in some sequential order. More precisely, the behavior
of a shared object must be linearizable [HW90]. One way to ensure linearizability is to
implement shared objects using critical sections [CHP71]. This approach, however, is not
fault-tolerant: The crash of a process while in the critical section of a shared object can
permanently prevent the rest of the processes from accessing that object. This lack of fault-
tolerance led to the concept of wait-free implementations of shared objects. Informally, a
shared object is wait-free if every operation invocation on that object by every process is
guaranteed a response in finite time irrespective of the speed of the other processes, even if
some or all other processes in the system crash.

Thus, a concurrent system in which all shared objects are wait-free is resilient to pro-
cess crashes. However, such a system is not resilient to the failures of the shared objects
themselves.' For example, the "crash" of a single shared object stops all the processes that
need to access that object. Motivated by this observation, we study the problem of imple-
menting wait-free shared objects that are also fault-tolerant. With such objects, the system
is guaranteed to make progress despite process crashes and the failures of some underlying
objects. (To simplify notation, hereafter "object" denotes a "shared object".)

The problem addressed in this paper is novel. A preliminary version appeared in
[JCT92a], and a summary of the results in [JCT92b]. An independent work by Afek,
Greenberg, Merritt, and Taubenfeld [AGMT92] has the same general goal, but differs in
many respects. We present a brief comparison of the two works in Section 8.

1.2 Object failures

We divide object failures into two broad classes: responsive and non-responsive. With
responsive failures, a faulty object responds to every invocation, but responses may be in-
correct. With non-responsive failures, a faulty object may also "hang" without responding.

We divide responsive failures into three models: R-crash, R-omission, and R-arbitrary.
An object that fails by R-crash behaves correctly until it fails, and once it fails, it returns
a distinguished response _ to every operation. As with R-crash, an object that fails by
R-omission may return a correct response or a _L. However, even if it responds L to a
process p, a subsequent operation by a different process q may get a correct response.
This behavior models an object ) made of several components, some of which failed. The

'Even "software" objects have underlying hardware components. The software and/or the hardware
could be faulty.
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operation by p "ran into" a failed component of 0 (and returned 1), while the later one
by q only encountered correct components of 0 (and returned a correct response). Finally,
objects experiencing R-arbitrary failures may "lie", i.e., return arbitrary responses.

Similarly, we divide non-responsive failures into crash, omission, and arbitrary. An
object that fails by crash behaves correctly until it fails, and once it fails, it stops responding.
An object that fails by omission may fail to respond to the invocations of an arbitrary subset
of processes, but continue to respond to the invocations of the remaining processes (forever).
The behavior of an object that experiences an arbitrary failure is completely unrestricted:
it may not respond, and even if it does, the response may be arbitrary.

1.3 Fault-tolerant objects

Let T be an object type and C = (Ti,T2,... ,T,,) be alist of object types (Ti's are not neces-
sarily distinct). A wait-free implementation of T from C is a function I" such that given any
distinct objects 01,02, ... , On of type T1, T2 ,..., T,, respectively, 0 = 1(01, 02,..., 0.) is
an object of type T that behaves correctly if all Oi's behave correctly. Roughly speaking, an
object behaves correctly if it is wait-free and its behavior is consistent with its type. We say
0 is a derived object of the implementation 1, and 01, 02,. . ., 0,, are the base objects of 0.
The resource complezity of 2- is n, the number of base objects required by I" to implement
a derived object. Such a wait-free implementation 17 is t-tolerant for failure model M if 0
behaves correctly even if at most t base objects of 0 fail by M. In this Introduction, we
write "implementation" as a shorthand for "wait-free implementation".

17 is a self-implementation if T1 = T2 .... = T. In other words, in a self-
implementation the base objects are of the same type as the derived object. For example.
consider the object type "2-process queue" (i.e., a queue that can be accessed by at most
two processes). In Section 5.3, we show that there is a t-tolerant self-implementation of
2-process queue for R-arbitrary failures. Intuitively, this means that using a set of wait-free
2-process queues, at most t of which may experience R-arbitrary failures, one can implement
a failure-free wait-free 2-process queue. Thus in a self-implementation fault-tolerance is
achieved through replication.

1.4 Results

To study whether a general object type has a t-tolerant implementation, we focus on two
particular object types: consensus 2 and register. Herlihy [Her9l] and Plotkin [Plo89]
showed that one can implement a wait-free object of any type (for which a sequential im-
plementation exists) using only consensus and register objects. Thus, if consensus and
register have t-tolerant implementations, then every object type has a t-tolerant imple-
mentation.

'A consensus object supports two operations propose 0 and propo e 1, and has the following sequential

specification: If the first operation on the object is propose v (v E f{0, 1}), then every operation is returned
the response v.
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We first study the problem of tolerating responsive failures. We give t-tolerant self-
implementations of consensus for R-crash, R-omission, and R-arbitrary failures. For
R-crash and R-omission failures, our self-implementation is optimal requiring only t + 1
base consensus objects. For R-arbifruy failures, our self-implementation is efficient re-
quiring O(tlogt) base consensus objects. We also give t-tolerant self-implementations of
register for R-crash, R-omission, and R-arbitrary failures. Combining the above results
with [Her9l, Plo89], we conclude that every object type T has a t-tolerant implementa-
tion (from consensus and register) for all responsive models of failures. Moreover, if T
implements consensus and register, then T has a t-tolerant self-implementation. This
implies that familiar object types such as (2-process) fetch&add, queue, stack, test&set.
and (N-process) compare&swap, move, swap have t-tolerant self-implementations even for
R-arbitrary failures!

What about tolerating non-responsive failures? We first show that there is no 1-
tolerant implementation of consensus even for crash failures, the most benign of the non-
responsive models of failures. 3 This immediately implies that any object type T that imple-
ments consensus such as fetch&add, queue, stack, test&set, compare&swap, move,
sticky-bit, swap, has no 1-tolerant implementation for crash failures. In contrast, we
show that register has a t-tolerant self-implementation even for arbitrary failures. Since
randomized implementations of consensus from register are well known (for example.
see [Asp90]), the above result implies that every object type has a randomized t-tolerant
implementation from register even for arbitrary failures. In addition to these universality
and impossibility results, this paper contains the following results.

Consider a t-tolerant implementation for failure model M. By definition, a derived
object of this implementation is guaranteed to behave correctly even if up to t base objects
fail by M. But what happens if more than t base objects fail? In general, the derived
object may experience a more severe failure than M. In other words, implementations
may "amplify" failures: derived objects may fail more severely than base objects. This
undesirable behavior is prevented by implementations that are "gracefully degrading". An
implementation is gracefully degrading for failure model M if it has the following property:
if base objects only fail by M, then derived objects also fail by M.

From a 1-tolerant gracefully degrading self-implementation of any object type T for a
failure model M, we show how to recursively construct a t-tolerant gracefully degrading self-
implementation of T for M. Thus, graceful degradation provides a method for automatically
increasing the fault-tolerance of an implementation.

Requiring graceful degradation may increase the cost of an implementation. For in-
stance, consider t-tolerant implementations of consensus for R-omission failures. We
present two such implementations. One uses only t + 1 base objects, but is not grace-
fully degrading. The other is gracefully degrading, but requires 2t + 1 base objects. In
fact, we show that graceful degradation for R-omission failures requires at least 2t + 1 base

3The impossibility of implementing a fault-tolerant consensus object from any finite list of base objects.,
one of which may crash, is shown using the impossibility of solving the consensus problem among a finite
number of processes, one of which may crash [FLP85, LAA87].
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objects (this lower bound holds for every deterministic non-trivial type).

In some cases, graceful degradation cannot be even achieved. In particular, we show
that there is a large class of object types that have no gracefully degrading implementations
for R-crash. Intuitively, this means that whatever the implementation, the failure of the
imilemented object will be more severe than R-crash, even if all its base objects can only
fail by R-crash. In other words, with R-crash, implementations necessarily amplify failures.
In contrast, we prove the following strong possibility result for R-omission: Every object
type has a t-tolerant gracefully degrading implementation from consensus and register
for R-omission.

We study the problem of translating severe failures into more benign failures [NT90].
In particular we show that given 3t + 1 (base) consensus objects, at most t of which may
experience R-arbitrary failures, we can implement a consensus object that can only fail
by R-omission. We prove that this translation from R-arbitrary to R-omission is resource
optimal.

We also show that arbitrary failures can be viewed as having two orthogonal compo-
nents: omission and R-arbitrary. Specifically, for any object type T, given any t-tolerant
self-implementations 1' and V" of T for omission failures and R-arbitrary failures respec-
tively, we show how to construct a t-tolerant self-implementation of T for arbitrary failures.
This decomposition simplifies the problem of tolerating arbitrary failures.

The paper is organized as follows. We give an informal system model and define several
types of object failures in Sections 2 and 3. We define the concepts of t-tolerant wait-free
implementation and graceful degradation in Section 4. We provide a formal presentation of
the material of Sections 2, 3, and 4 in Appendices A, B, and C, respectively. In Section 5.
we show how to implement objects that tolerate responsive failures. We present t-tolerant
implementations of consensus in Section 5.1, of register in Section 5.2, and of arbitrary
types in Section 5.3. The results on the cost of graceful degradation, and on the translation
between failure models are also presented in Section 5.1. In Section 6, we study the fea-
sibility of fault-tolerant implementations for non-responsive object failures. We first prove
that many common object types including consensus have no 1-tolerant implementations
for crash. In contrast, we show that register has a t-tolerant self-implementation even
for arbitrary failures. We finally show that every object type has a t-tolerant randomized
implementation from register even for arbitrary failures. In Section 7, we study graceful
degradation for the R-crash and R-omission failure models. We present impossibility re-
sults for R-crash and a universality result for R-omission. In Section 8, we present a brief
comparison with the results in [AGMT92]. In Appendix D, we define the object types that
appear in this paper.

2 Informal model

A concurrent system consists of processes and shared objects. Associated with each object
is a type. The type characterizes the expected behavior of the object. More precisely, an
object type T is a tuple (N, OP, RES. G), where N is an integer greater than one, OP and
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RES are sets of operations and responses respectively, and G is a directed finite or infinite
graph in which each edge has a label of the form (op, res) where op E OP and res E RES.
Intuitively, if 0 is an object of type T, then 0 supports the operations in OP and may be
shared by N processes (we say T is an N-process type). G specifies the expected behavior
of 0 in the absence of concurrent operations on 0.

The vertices of G are the states of T. One state of T is the initial state. A state s of
T is reachable if there is a path in G from the initial state to s. We assume that every state
of T is reachable. A sequence S =(opl,resl),(op2 , res2 ), . . .,(op, resl) is consistent from a
state s of T if there is a path labeled S in G from the state s. S is consistent with respect
to T if it is consistent from the initial state of T. T is deterministic if for every state s of
T and every operation op E OP, there is at most one edge from s labeled (op, res). T is
non-deterministic otherwise. T is finite if G is finite; T is infinite otherwise.

An object 0 of type T supports the set of procedures Apply(P, op, 0), for each pro-
cess P and operation op in OP(T). A process P invokes operation op on object 0 by
calling Apply(P, op, 0), and executes the operation by executing this procedure. The oper-
ation completes when the procedure terminates. The response for an operation is the value
returned by the proce iure.

The sequential specification of an object (9, given by its type, is not sufficient to predict
O's behavior in the presence of concurrent operations. To characterize such behavior, we
use the concept of linearizability [HW90, Lam86]. Roughly speaking, linearizability requires
every operation execution to appear to take effect instantaneously at some point in time
between its invocation and response. We make it more precise below.

An execution of a concurrent system is an interleaving of the steps of the processes
and the invocations and resnonses of the objects. Consider an execution E of a concurrent
system consisting of an object 0 that is shared by processes P 1, P2,... ,PN. The history
7 of 0 in E is a set defined as follows: (Pi,op, v, ts,te) E Ni iff in execution E, process
Pi invokes op at time t,, and this operation completes at time t, returning the response
v. Further, (Pi, op, *, t,, 0) E 'H iff process Pi invokes op at time t,, and this operation
does not complete. A history is complete if it has no incomplete operations. Given two
operations (Pi, op, v, t8, te) and (Pj, op', v' , t,) in a history, we say (Pi, op, v, t , te) precedes
(Pj. op v', t',, t' ) if t, < t'. A complete history Ni is linearizable with respect to a type T if
there is a sequencing S of the tuples (operations) in 7i such that S respects the 'precedes'
relation, and is consistent with respect to T. A history H is linearizable with respect to
a type T if a linearizable complete history V-C can be obtained from 7 as follows: each
incomplete operation (Pi, op, *, t , , oc) in H- is either removed or replaced by a, complete
operation (Pi,op, v,t,,t,), for some response v and time t,. This definition captures the
notion that some incomplete operations in ?Y had a "visible" effect, while the others did
not.

Processes are asynchronous: i.e., there are no bounds on the relative speeds of the
processes. Furthermore, a process may crash: i.e., a process may stop at an arbitrary point
in an execution and never take any steps thereafter. The concept of wait-freedom was
introduced to cope with such processes (for example, see [Her9l]). An object 0 is wait-free
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in an ezecution E if either (i) E is finite, or (ii) every operation on 0 invoked by a process
that does not crash in E gets a response from 0.

An object 0 is correct in execution E iff (i) 0 is wait-free in E, and (ii) the history of
0 in E is linearizable with respect to the type of 0. We say that (9 fails in E iff (9 is not
correct in E. Even a faulty object may satisfy certain properties which depend on the type
of failure it suffered. We postpone the definition of the failure models to next section.

Let T be an object type and C = (T1,T 2,...,Tn) be a list of object types (Ti's
are not necessarily distinct). A wait-free implementation of T from 4 is a function I
such that given any distinct objects 01,02,...,On of type T1,T 2,... ,T,, respectively,
(9 = .1Oi, 02,.. . ,O ) is an object of type T with the following property: In every ex-
ecution, if 01,02,. . . ,On are correct, then (9 is correct. We say (9 is a derived object of
the implementation 1, and 01, 02,.. ., On are the base objects of (9. All implementations
studied in this paper are wait-free. Hereafter we write "implementation" as shorthand for
"wait-free implementation".

We define the terms self-implementation of T and resource complexity as in Section
1.3. Our interest lies not just in implementations, but in implementations that tolerate the
failures of base objects. Thus, we also need to define a fault-tolerant implementation. We
present such a definition in Section 4, after defining failure models in Section 3.

3 Failure models

An object is only an abstraction with a multitude of possible implementations. For in-
stance, it may be built as a hardware module in a tightly coupled multi-processor system.,
or as a server machine in a message passing distributed system. Whatever the implementa-
tion, the reality is that hardware components sometimes fail, and when this happens, the
implementation fails to provide the intended abstraction.

Object failures lead to undesirable system behavior. Therefore, it is important to
implement derived objects that behave correctly even if some of the base objects of the
implementation fail. The complexity of such a fault-tolerant implementation depends on the
failure model, i.e., the manner in which a failed base object departs from correct behavior.
In this paper, we define a spectrum of failure models that fall into two broad classes:
responsive and non-responsive.

As we will see, in most models of failure, an object (9 of type T may fail by returning a
response that is not allowed by its type; that is, a response not in RES(T). When a process
P gets such a response from (9, it knows that ( is faulty. Thus, it is reasonable to assume
that P does not invoke operations on ( thereafter. We restrict our attention to executions
in which this assumption holds.



3.1 Responsive models of failure

An object experiencing a responsive failure responds to every invocation, even though the
response may be incorrect. In other words, the object remains wait-free even after if it fails.
We describe below three increasingly severe models of responsive failures.

3.1.1 R-crash

R-crash is the most benign model of object failure. Informally, an object that fails by R-
crash behaves correctly until it fails, and once it fails, it returns a distinguished response
I to every invocation. This model is based on the premise that an object detects when it
becomes faulty.

More precisely, an object ( fails in execution E by R-crash iff it fails in E, and satisfies
the following properties:

1. ( is wait-free in E.

2. Every response from 0 in E is either _L or one of the responses allowed by the type
of (. An operation that returns _ is an aborted operation.

3. Let - be the history of 0 in E. Every operation in h that is preceded by an aborted
operation is itself an aborted operation.

4. Removing the aborted operations from 7-H results in a linearizable history with respect
to the type of 0.

Property 3 is the "once I, everafter I" property of R-crash. Property 4 models the re-
quirement that 0 should behave correctly until it fails.

3.1.2 R-omission

Consider an implementation 1, and a derived object ( of 1. Even if the base objects of (
can only fail by R-crash, 0 itself may experience a more severe failure than R-crash. To see
this, suppose a base object b of ( fails by R-crash. Consider a process P that invokes an
operation op on ( and executes Apply(P, op, 0). If Apply(P, op, () accesses b, b returns I
to P. This may cause P's invocation of op on ( to terminate and return I. Now suppose
that another process Q later invokes some operation op' on (, and that Apply(Q, op', () is
not required to access b. Then, process Q cannot notice the failure of b. So Q's invocation of
op on ( terminates "normally" and returns a non-I response. Thus, O's behavior violates
the "once I, everafter 1" property of R-crash. Does this mean that O's failure is arbitrary?
We now argue that this is not the case.

Recall that after P gets 1, P refrains from accessing 0 again. To Q, this scenario
is indistinguishable from one in which P had crashed in the middle of the procedure
Apply(P, op, 0), while accessing b. Since the implementation I (from which ( is derived)

8



is wait-free, 0 tolerates the apparent crash of P. Thus, O's response to Q must be correct.
So, the failure of 0 is more severe than R-crash, but is not completely arbitrary. The
R-omission model captures such a failure4 .

More precisely, an object 0 fails in execution E by R-omission iff it fails in E, and
satisfies the following properties:

1. 0 is wait-free in E.

2. Every response from 0 in E is either I1 or one of the responses allowed by the type
of 0.

3. Let H be the history of 0 in E. Replacing every aborted operation (P, op, I, t,, te)

in 7H by an incomplete operation (P, op, *, t,, oc) results in a linearizable history with

respect to the type of 0.

3.1.3 ft-arbitrary

An object 0 fails in execution E by R-arbitrary5 ift it fails in E and is wait-free in E. In

other words, 0 responds to every invocation iD E, but the history of 0 is not linearizable
with respect to the type of 0.

3.2 Non-responsive models of failure

Each responsive model of failure has its non-responsive counter-part. The difference lies in
the fact that an object experiencing a non-responsive failure may also fail to respond to
invocations.

3.2.1 Crash

Crash is the most benign of all non-responsive models of failure. Informally, an object
subject to a crash failure behaves correctly until it fails (Property 1, below), and once it

fails, it never responds to any invocations (Property 2, below). More precisely. an object 0
fails in execution E by crash ifi it fails in E, and satisfies the following properties:

1. The history of 0 in E is linearizable with respect to the type of 0.

2. The total number of responses from 0 in E is finite.

4 Formal justification for the R-omission model will be apparent in Section 7.
'For readability, we sometimes prefer writing "0 experiences an R-arbitrary failure in E".
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3.2.2 0 mission

Omission failures are more severe than crash. An object 0 fails in execution E by omission
iff it fails in E, and the history of 0 in E is linearizable with respect to the type of 0. In
particular, an object that fails by omission does not necessarily satisfy Property 2 of crash
model. Thus, an object that fails by omission nzay not respond to invocations from some
processes, but respond to invocations from others forever.

3.2.3 Arbitrary

The behavior of an object that experiences an arbitrary failure is completely unrestricted.
In particular, such an object may not respond to an invocation, even if it does, the response
may be arbitrary. More precisely, an object ( fails in execution E by arbitrary IT it fails
in E.

4 Definition of fault-tolerant implementations

An implementation I of type T is t-tolerant for failure model M if every derived object 0
of I has the following property: In every execution, if at most t base obi cts fail, and they
fail by M, then 0 is correct.

An ij_ At.-uentation I is gracefully degrading for failure model M if every derived object
O of I has the following property: In every execution, if all base objects that fail, fail by
A,. then either (9 is correct or it fails by M.

Let ( be a derived object of an implementation which is both t-tolerant and gracefully
degrading for failure model M. The above definitions imply that: (i) if at most t base
objects of 0 fail and they fail by Al, then ( does not fail, and (ii) if more than t base
objects of ( fail, and they fail by ., then ( may fail, but it does not experience a more
severe failure than M. Property (i) is guaranteed by t-tolerance, and property (ii) by
graceful degradation.

Gracefully degrading implementations can be easily composed as shown in the following
lemma. Given a list L of integers and an integer r, let MinSum(n, L) be the sum of the n
smallest integers in L.

Lemma 4.1 If a type T has a t-tolerant gracefully degrading implementation I from the
list Ti, T 2 ,. . ., T, of types for failure model M, and each Ti (1 < i < n) has a ti-tolerant

gracefully degradi-g implementation Ii from Ti, T 2 ,. .. , Tij, for M, then T has a t'-tolerant
gracefully degrading implementation 1; from T11, T12, .. ., T,1 , T21, . •., T2j2, . . ..... T 1
for M. In the above, t' = MinSum(t + 1, (tI + 1,t2 + 1,...,t, + 1)) -1.

Proof (sketch) Define '(o 1 1 ,...,oj,,.. . ,onl, ... ,o,) = "(O,.On) where 01 =

-l1 (ol1, o12 .... oiii),.... On = 1.,(on, ,o,2,....o, , ). Assume that each okI, if it fails, only
fails by A-I. Since Ii is ti-tolerant, Oi fails only if at least ti + 1 objects among oil . 0., oj,
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fail; furthermore, since Ii is gracefully degrading, Oi fails only by M. Similarly, since I is
t-tolerant, I(O1,... ,O,) fails only if at least t + 1 objects among 01,... ,O, fail. Thus,
for I(O1,. . . ,O) to fail, at least MinSum(t + 1, (tl + 1,t 2 + 1,... ,t, + 1)) objects among
o11,... ,oj, ,.. ., onl, ... onin must fail. In other words, V, is a t'-tolerant implementation
of T from Tl 1,. . . Tni. " is gracefully degrading for M because I and each Ii (1 < i < n)
are gracefully degrading for M. 0

The above lemma can be used to enhance the fault-tolerance of a self-implementation.
This is the substance of the next corollary, obtained by setting Ti = T, ti = t, ji = n, and
Ii = I in the lemma.

Corollary 4.1 If a type T has a t-tolerant g'acefully degrading self-implementation I of
resource complexity n for a failure model M, then T has a (t2 + 2t)-tolerant gracefully
degrading self-implementation V- of resource complexity n 2 for M.

Recursive application of the above corollary boosts the fault-tolerance of self-implementations.

Corollary 4.2 (Booster Lemma) If a type T has a 1-tolerant gracefully degrading self-
implementation of resource complexity k for a failure model M, then T has a t-tolerant
gracefully degrading self-implementation of resource complexity o(tlog2 k) for M.

In Section 5.1.4, we illustrate how this corollary can be applied to construct a t-tolerant
self-implementation of consensus for R-arbitrary failures.

5 Tolerating responsive failures

Herlihy [Her9l] and Plotkin [Plo89] showed that one can implement a (wait-free) object of
any type using only consensus and register objects. Therefore, if consensus and register
have t-tolerant implementations, then every object type has a t-tolerant implementation.
Hence we focus on fault-tolerant implementations of consensus and register.

5.1 Fault-tolerant implementation of consensus

In the following, we first define the object type N-consensus. We then present a t-tolerant
self-implementation of N-consensus that works for both R-crash and R-omission failures.
This implementation requires t + 1 base N-consensus objects, and is thus resource opti-
mal. Following that, we show how to translate R-arbitrary failures of N-consensus objects
to R-omission failures. Our translation is also proved to be resource optimal. Although
the above two results can be chained together to obtain a t-tolerant self-implementation of
N-consensus for R-arbitrary failures, the resultant self-implementation is not resource effi-
cient: it requires 0(t 2 ) base consensus objects. We therefore present an alternative efficient
self-implementation of resource complexity 0(t log t).

11



5.1.1 The object type N-consensus

N-consensus is an N-process object type that supports two operations, propose 0 and
propose 1, and has the following sequential specification: If the first operation invoked
is propose v, then every invocation (including the first) is returned the response v. The
following two propositions follow directly from definitions:

Proposition 5.1 An N-consensus object 0 is correct in execution E if and only if it is
wait-free and satisfies the following three properties in E:

* Validity: If 0 returns a response v, and v E {0, 1}, then there was a prior invocation
of propose v on 0.

" Agreement: If 0 returns v 1 ,v 2 to two invocations, and v 1 ,v 2 E {0, 1}, then v = V2.

" Integrity: Every response of 0 is either 0 or 1.

An N-consensus object 0 satisfies weak integrity in an execution in E iff every response of
0 in E is either 0, 1, or I.

Proposition 5.2 Let 0 be an N-consensus object that fails in execution E. Object 0 fails
by R-omission in E if and only if it is wait-free, and satisfies validity, agreement, and weak
zntegrity in E.

In describing our implementations, we write loc := Propose(p, v, 0)6 to denote that
process p invokes propose v on 0 and stores the response in its local variable loc.

5.1.2 Tolerating R-crash and R-omission failures

We present a t-tolerant self-implementation of N-consensus for R-omission failures. The
resource complexity is t + 1, and is therefore optimal. Since R-omission failures are strictly
more severe than R-crash, this self-implementation also works for R-crash. However, it is
not gracefully degrading either for R-crash or for R-omission. In fact, we will see in Section
7 that N-consensus has no t-tolerant gracefully degrading implementation for R-crash. For
R-omission, however, we present a t-tolerant gracefully degrading self-implementation of
resource complexity 2t + 1. We also prove that 2t + 1 is a lower bound on the resource
complexity. In fact, this lower bound applies to every "non-trivial" deterministic object
type, not just to N-consensus; furthermore, it is not restricted to self-implementations.

Theorem 5.1 Figure 1 gives a t-tolerant self-implementation of N-consensus for R-omission
failures. The resource complexity of the implementation is t + 1 and is optimal.

4 Throughout this paper, we write Propose (with upper case "P") if the operation is on a derived object.
and propose (with lower case "p") if it is on a base object.
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01,02,... ,Oti : N-consensus objects

Procedure Propose(p, vp, 0.) /* Vp E {o, 1} *1
estimatep, w, k : integer local to p

begin
estimatep := VP
fork := 1tot+1 do

w propose(p, estimatep, O)
if w 0 1_ then estimatep := w

return( estimatep)
end

Figure 1: t-tolerant self-implementation of N-consensus for R-omission

Proof Let 0 be a derived N-consensus object of the implementation, and 01,02,... O+1
be its base objects. Consider an execution E in which at most t base objects fail by R-
omission, and the remaining objects are correct. We show that 0 is correct in E.

1. (9 satisfies validity: An easy induction on k shows that if estimatep equals some value
u at any point in E, then there was a prior invocation (from some process q) of

Propose(q, u, 0). The induction will use Proposition 5.2, and the fact that p does

not change estimatep if a base object returns 1.

2. ) satisfies agreement: Since at most t base objects fail, there is an Ok (1 < k < t + 1)
that is correct. So Ok returns the same response w E {0, 1} to every process that
accesses it. This implies that for all p that access Ok, estimatep = w when p completes
the kth iteration of the loop. Since each base object in Ok., Ot+ 1 is either correct
or fails by R-omission in E, by Propositions 5.1 and 5.2, each of these base objects
satisfies validity. From these facts, it is easy to conclude from the implementation that
estimatep never changes value from the (k + 1)st iteration onwards. Thus 0 returns

the same response w to every p.

3. ) satisfies integrity: Obvious.

Since a base object that fails by R-omission remains wait-free, it is clear that C) is wait-free
in E. By Proposition 5.1, C is correct in E. It is obvious that the resource complexity of
t + 1 of our self-implementation is optimal. 0

The above (self) implementation is not gracefully degrading. For instance, suppose that
vp = 0 and vq = 1, and all the t + 1 base objects fail by R-crash initially. It is easy
to see that C) returns 0 to p and 1 to q. Thus 0 does not satisfy agreement, and by
Proposition 5.2, the failure of C is more severe than R-omission. In fact, we will now show
that 2t + 1 is both a lower and upper bound on the resource complexity of a t-tolerant
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gracefully degrading self-implementation of N-consensus for R-omission7 . The gracefully
degrading self-implementation that requires 2t - 1 base objects is given in Figure 2.

01,02,. • 0 2t+1 : N-consensus objects

Procedure Propose(p, vP, 0) /* vp E {0, 1} */
Vp[1..2t + 1], estimatep, w, k: integer local to p

begin
1 estimatep := vp
2 fork :=1to2t+ldo

3 w := propose(p, estimate , Ok)

4 Vp[k] :=w
5 if (w - -.L)A(w 34 estimatep) then

6 estimatep := w
7 Vp[1... (k - 1)]
8 if Vp has more than t I 's then
9 return(±I )

10 else return(estimatep)
end

Figure 2: t-tolerant gracefully degrading self-implen-entation of N-consensus for R-omission

Claim 5.1 For every k, 1 < k < 2t + 1, at the end of the kth iteration of the for-loop
of Propose(p, vp, 0) in Figure 2, estimat% E {0, 1}, and V[1..k] contains only 1 's and

estimatep 's.

Proof By an easy induction on k. E

Theorem 5.2 Figure 2 gives a t-tolerant gracefully degrading self-implementation of N-consensus

for R-omission.

Proof Let 0 be a derived N-consensus object of the implementation, and 01,02,...,Ot+l

be its base objects. Consider an execution E in which all base objects that fail, fail by R-
omission.

1. 0 is wait-free: Obvious since base objects that fail by R-omission remain wait-free.

2. 0 satisfies validity: An easy induction on k shows that if estimatep equals some value
u at any point in E, then there was a prior invocation (from some process q) of

Propose(q, u, 0). The induction will use Proposition 5.2, and the fact that p does

not change estimatep if a base object returns I_.

'As will be shown later in Theorem 7.2, there is no t-tolerant gracefully degrading implementation of
N-consensus for R-crash.
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3. 0 satisfies agreement: Suppose, for a contradiction, there exist two processes p and
q such that Propose(p, up, 0) returns 0 and Propose(q, Vq, 0) returns 1. From Claim
5.1, and lines 8, 9 of the algorithm, it follows that V has at least t + I O's at the end
of the execution of Propose(p, vp, 0) and V has at least t + 1 1's at the end of the
execution of Propose(q,rv, 0). This is possible.only if there is a k (1 < k < 2t+1) such
that propose(p, estimatep, Ok) returned 0 and propose(q, estimateq, Ok) returned 1.
Thus Ok does not satisfy agreement. By Proposition 5.2, the failure of Ok in E is not
by R-omission, a contradiction.

4. 0 satisfies weak integrity: Obvious.

5. 0 satisfies integrity if at most t base objects fail: Let Oki,, Ok,, Okt (kl < k2 <
... < ki) be all the correct base objects. Since at most t fail, we have I > t + 1. By
Proposition 5.1, Ok satisfies integrity and agreement. Thus, there is a v E {0, 1} such
that for all p, propose(p, estimatep, Oki) returns v. Thus, for all p, estimatep = v at
the end of k1 iterations of the for-loop in Propose(p, vp, 0). Using this and Proposition
5.2, it is easy to verify that at the end of the execution of Propose(p, vp, 0), Vp[ki]= v
and estimatep = v for all p and for all 1 < i < 1. This implies, by lines 8, 9 of the
algorithm, that Propose(p, vp, 0) returns v.

From 1, 2, 3, and 4 above, and Proposition 5.2, we conclude that either 0 is correct
in E, or 0 fails by R-omission in E. From 1, 2, 3, and 5 above, and Proposition 5.1, we
conclude that if at most t base objects of 0 fail in E, 0 is correct in E. Thus, Figure 2 is
a t-tolerant gracefully degrading self-implementation of N-consensus for R-omission. 0

We now prove a general lower bound on the resource complexity of gracefully degrading
implementations for R-omission. Informally, a type T is trivial if it admits the following
implementation: there is a function f such that every Apply(P, op, 0) blindly returns f(op).
More precisely, T is trivial if there is a function f : OP(T) -- RES(T) such that for every
sequence OPI,OP2,..,o-P of operations, (opI,f(opI)), (op2, f(op2)),. , (op, f(opk)) is
consistent with respect to T. An object type is non-trivial if it is not trivial. The following

proposition is immediate from the definitions.

Proposition 5.3 Let T be a deterministic non-trivial object type, and fo : OP(T) --

RES(T) be the function such that for all op, (op, fo(op)) is consistent with respect to T.8
Then there exists a k > 1 and a sequence Op,0p2 ,.. .,Opk,oPk+1 of operations such that
(opI, f(op)), (op 2 , fo(op 2 )),. . . , (opN, Mfo(OpN)) is consistent with respect to T, but (opl, fo(opl)),
(op2, f(opM))(OPk.... (opkfis not.

Theorem 5.3 Let T be any deterministic non-trivial object type. The resource complexity
of any t-tolerant gracefully degrading implementation of T for R-omission is at least 2t + 1.

Proof Suppose T has a t-tolerant gracefully degrading implementation I from some list
T1, T2,..., T2t of object types for R-omission. Let 01,02,. .. , O2t be base objects of type

8 Note that fo(op) is the response of an object of type T when op is the first operation applied to that
object.
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T1 , T2 ,..., T2 t, and let 0 = 1(01,02,..., 02t) be the corresponding derived object (of type
T). Let fo and op1,op2,. . . ,oPk,opk+i be as in Proposition 5.3. Consider the following
scenario in which two processes P and Q access the object 0. At the start of the scenario.
object 0 is in the initial state, and all its base objects fail, as described below.

For objects Oi, 1 < i < t: Whenever P invokes an operation on Oi, it returns a correct
response to P and undergoes an appropriate change of state; but whenever Q invokes an
operation on Oi, it returns -L and does not undergo any change of state. For objects 0,
t + 1 < j < 2t: Whenever P invokes an operation on Oj, it returns -L and does not undergo
any change of state; but whenever Q invokes an operation on Oj, it returns a correct
response to Q and undergoes an appropriate change of state.

Scenario S

1. Process Q executes the sequence op1, Op2, ... , opk of operations on 0. Let v1, v2,. .•, Vk
be the corresponding responses.

2. Process P executes opk+l on 0.

(All steps in Item 1 strictly precede every step in Item 2). Note that:

1. The failure of each base object is by R-omission.

2. The scenario S is indistinguishable to Q from a scenario S' in which 01,02,. Ot
fail as above, but Ot+1, Ot+2,..., 0 2t are correct. Since 0 is derived from a t-tolerant
implementation, the responses to opl, oP2, ..., opk returned by Q in S' must be correct.
So the responses in S' must be fo(opl), fo(op2),. .. , fo(op), respectively. Since S and
S' are indistinguishable to Q, Q returns the same responses in S.

3. When P executes op on 0, the manner in which objects have failed makes it impossible
for P to know whether Q previously executed any operations on 0. So, the scenario
S is indistinguishable to P from a scenario S" in which (i) it is the first process to
invoke an operation on 0, and (ii) only t base objects, namely Ot+i ,Ot-2,... ,

0 2t.
fail. Since 0 is derived from a t-tolerant implementation, P must return the correct
response in S". So P must return fo(opk+l) in S". Since S is indistinguishable to P
from S", P also returns the response fo(opk+l) in S.

By Proposition 5.3, (opl, fo(opl)), (op2, fo(op2)),. . , (opk, fo(opk)), (opk-, f (opk.) ) is

not consistent with respect to T. So, the history of object 0 in the above scenario is not
linearizable with respect to its type T. Thus, 0 does not satisfy Property 3 of R-omission
in Section 3.1.2. In other words, the failure of 0 is not by R-omission, even though the
base objects of 0 have only failed by R-omission. This implies that 7, the implementation
from which 0 is derived, is not gracefully degrading for R-omission. C

5.1.3 Translation from R-arbitrary to R-omission

A self-implementation I of object type T is a t-tolerant translation from a failure model M
to a failure model M' for T if every derived object 0 of I satisfies the following property:
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In every execution E, if at most t base objects of 0 fail, and fail by M, then either (9 is
correct or it fails by M'. Note that if no base objects fail in E, then (9 does not fail either
(this follows from the definition of implementation).

In this section, we present a t-tolerant translation from R-arbitrary to R-omission for
N-consensus. We also show that its resource complexity, 3t+ 1, is optimal. This translation
can be used along with the t-tolerant self-implementation of N-consensus for R-omission
(seen in Section 5.1.2) to obtain a t-tolerant self-implementation of N-consensus for R-
arbitrary failures.

Since a consensus object that experiences an R-arbitrary failure may return a non-
binary response, we always "filter" the responses to get a binary response: procedure

f-propose(p, v, () returns propose(p, v, (9) if it is 0 or 1, and returns 0 otherwise.

A[l ... 2t + 1], B[l ... t] : N-consensus objects

Procedure Propose(p, vP, (9)
countp[O..l], w, i, beliefp : integer local to p

begin
1 Phase 1: countp[O..1] := (0,0)
2 fori:= lto2t+l do

3 w := f-propose(p,vP,A[i])
4 count,[wi := countp[w] + 1
5 Phase 2: Choose beliefp such that

countp[beliefp] > countp[beliefp].
6 fori:= I totdo
7 if beliefp $ f-propose(p,beliefp, B[i]) then
8 return(l)

9 return(beliefp)
end

Figure 3: t-tolerant translation from R-arbitrary to R-omission for N-consensus

Let (9 be an N-consensus object derived from the translation in Figure 3. The base
objects of (9 are A[l ... 2t + 11, B[1 ... t].

Claim 5.2 (9 satisfies integrity in any execution in which all base objects of (9 are correct.

Proof Clear from the algorithm.

Claim 5.3 (9 is wait-free in any execution in which all base objects of (9 are wait-free.
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Proof Clear from the algorithm. 0

In the following claims, let E be an execution in which at most t base objects experience
R-arbitrary failures, and the remaining are correct.

Claim 5.4 0 satisfies weak integrity in E.

Proof Clear from the algorithm. []

Claim 5.5 0 satisfies validity in E.

Proof Suppose 0 returns v E {0, 1} to the invocation Propose(p, Vp, 0) (from process p)
Then v = beliefp (by line 9), and countp[v] = countp[beliefp] > t+1 (by line 5). So there is at
least one correct base object A[i] such that propose (p, vp, A[i]) returned v. By Proposition
5.1, A[i] satisfies validity. It follows that some process q invoked propose (q, vq, A[i]) where
Vq = v. This implies that q invoked Propose(q, v, 0).

Claim 5.6 0 satisfies agreement in E.

Proof Suppose 0 fails to satisfy agreement by returning v E {0, 1} to some process p. and
F to a different process q. 0 returns v to p implies v = beliefp. Similarly F = beliefq. We
thus have beliefp 0 beliefq. It is easy to verify that if all of A[1 ... 2t + 1] are correct, then

beliefp = belieffq. It follows that at least one of A[1 ... 2t + 1] fails.

Further, 0 returns v to p implies, for all 1 < i < t, propose(p,beliefp,B[i]) returns
beliefp = v to p. Similarly, for all 1 < i < t, propose(q, beliefq, B[i]) returns beliefq = :
to q. Thus all t base objects B[1 ... tJ fail by not satisfying agreement. Counting the failed
A[i]'s and B[i]'s, we have more than t failed base objects, a contradiction. 0

From the above claims, and Propositions 5.1 and 5.2, we conclude that: (i) 0 is correct
in every execution in which all base objects of . are correct; and (ii) 0 is either correct
or it fails by R-omission in every execution in which at most t base objects of ) fail by
R-arbitrary, and the remaining base objects are correct. Thus,

Theorem 5.4 Figure 3 presents a t-tolerant translation from R-arbitrary failures to R-
omission failures for N-consensus. The resource complexity of the translation is 3t + 1.

Theorem 5.5 The resource complexity of any translation I from R-arbitrary to R-omission
for N-consensus is at least 3t + 1.

Proof For a contradiction, assume the resource complexity of I is n < 3t. We prove
the theorem through a series of claims, involving "indistinguishable" scenarios. Let 0 =
2(ol, o2,..., o). In the following, we say a process p accesses a base object oi if during the
execution of Propose(p, vp, 0), p executes propose(p *, oi).
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Claim 5.7 Suppose p ezecutes Propose(p, 0, 0) to completion. If all base objects are cor-
rect, then p accesses at least t + 1 base objects.

Proof Suppose the claim is false, and p accesses only oil ,.... ,oi, (m < t) before
completing Propose(p,0, 0). Since all base objects are correct, 09 satisfies validity and
integrity. Hence Propose(p, G, 0) returns 0. Now consider the following two scenarios.

Scenario S1

1. p executes Propose(p, 0,0) to completion accessing only Oi2Oi .. . . .. oi (m < t).
Propose(p, 0, (9) returns 0.

2. q executes Propose(q, 1, 0) to completion.

Scenario S2

1. oi1, oi, , oi,, fail and behave as though they are accessed by p exactly as in scenario
SI. This is possible since m < t.

2. q executes Propose(q, 1, 0) to completion.

Since no base objects fail in S1, 0 must be correct in S1. By Proposition 5.1, 0 satisfies
integrity and agreement. Thus Propose(q, 1, 0) returns 0 in S1. Clearly S1 Z q S2 (we
write Si -q S2 to denote that Scenarios S1 and S2 are indistinguishable to process q). So
Propose(q, 1, 0) returns 0 in S2 also, violating validity. By Propositions 5.1 and 5.2. 0 is
neither correct nor does it fail by R-omission. Since at most t base objects fail in S2. and
they fail by R-arbitrary, the translation I is incorrect, a contradiction. E

Claim 5.8 Consider

Scenario S3

1. p executes Propose(p, 0, 0) up to the point where it has accessed exactly t base objects
oil , 0 i2 ,• .. , Oit

2. q executes Propose(q, 1, 0) to completion.

Then Propose(q, 1, 0) returns 1.

Proof Let S = {base objects accessed by q} - {oi, o, 02. oi, }. Let oJo, .... o be all
the base objects in S arranged in order of first invocation of q. Note that k < n - t < 2t.

Let S2' represent scenario S2 when m = t. Since at most t base objects fail in S2'.
and they fail by R-arbitrary, 0 must either be correct or fail by R-omission. Hence, by
Propositions 5.1 and 5.2, 0 satisfies validity and weak integrity in S2'. So Propose(q, 1, 0)
returns 1 or I in S2'. Since S2' ;sq S3, we conclude Propose(q, 1, 0) returns 1 or I in S3.
Since no base object fails in S3, 0 must be correct. By Proposition 5.1, 0 satisfies integrity
in S3. So Propose(q, 1, 0) returns either 0 or 1 in S3. Together with the above conclusion.
his implies the claim.
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Claim 5.9 Consider

Scenario S4

1. p executes Propose(p, 0, 0) up to the point where it has accessed exactly t base objects
oil I Oi2 , . . . I Oit .

2. Let oil,o,2 ... , O be as defined above (note k < 2t). q executes Propose(q, 1. 0) up
to the point where it has accessed exactly {oil ,oJ2 .... I O ,k_

3. p completes the execution of Propose(p, 0, 0).

Then Propose(p, 0, 0) returns 0.

Proof Consider

Scenario S5

1. p executes Propose(p, 0, 0) up to the point where it has accessed exactly t base objects
0il, Oil I .... Oi.

2. The base objects oil, o2,. , oj,_t fail and behave as though they are accessed by q
exactly as in S4.

3. p completes the execution of Propose(p, 0, 0).

Since k < 2t, the number of base objects that fail in S5 = k - t < t. Since they fail
by R-arbitrary in S5, either 0 is correct in S5, or 0 fails by R-omission in 55. Thus, by
Propositions 5.1 and 5.2, ( satisfies validity and weak integrity in S5. So Propose(p. 0, (9)
returns either 0 or I in S5. Since clearly S4 , S5, Propose(p, 0, 0) returns either 0 or I
in S4 also. However since no base object fails in S4, 0 is correct in S4, and by Proposition
5.1, it satisfies integrity in S4. Thus Propose(p, 0, () returns 0 in S4. E

Claim 5.10 Consider

Scenario S6

1. p executes Propose(p, 0, () up to the point where it has accessed exactly t base objects

Oi1, Oi 2 .... Oi t •

2. q executes Propose(q, 1, () to completion, returning 1, by Claim 5.8.

3 Let ol ,oi2 .... oi, be as defined above (note k < 2t). {oj, ,oiA ,- .2 ... oi,} fail
and behave as though they are never accessed by q.

4. p completes the execution of Propose(p, 0, 0).

Then Propose(p. 0. () returns 0.
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Proof Note that S4 ;zz S6. By Claim 5.9, Propose(p, 0, 0) returns 0 in S4. So Propose(p, 0, 9)

returns 0 in S6. 0

From the above claim, it is clear that 0 does not satisfy agreement in S6. Hence. by

Propositions 5.1 and 5.2, 0 fails in S6, but not by R-omission. Since at most t base objects

fail in S6, and they fail by R-arbitrary, the translation I is incorrect, a contradiction. This

completes the proof of Theorem 5.5.

5.1.4 Tolerating R-arbitrary failures

Since N-consensus has a t-tolerant translation from R-arbitrary to R-omission (of resource

complexity 3t + 1), and has a t-tolerant self-implementation for R-onission failures (of

resource complexity t + 1), it follows that N-consensus has a t-tolerant self-implementation

for R-arbitrary failures. However the resulting self-implementation is expensive, requiring

(3t + 1)(t + 1) base objects. In this section, we present a t-tolerant self-implementation for

R-arbitrary failures whose resource complexity is only O(t log t). 9 This self-implementation

uses the divide-and-conquer strategy. In Figure 4, we present the base step: obtaining a

I-tolerant self-implementation of resource complexity 6. In Figure 6, we show the recursive

step of obtaining a t-tolerant self-implementation from a t/2-tolerant self-implementation.

Consider the 1-tolerant self-implementation of N-consensus given in Figure 4:

Claim 5.11 Let i be either 1 or 4. If at most one object among Oi, Q-1, and 0i+2

fails, then Majority(p, O, O I,0i-2.,v) returns - only if there is a concurrent or preceding

execution of Maj ority(q, Oi, 0i- I, oi-2, U).

Proof Clear from the algorithm. 0

Claim 5.12 Let i be either 1 or 4. If no object among Oi, Oi+, and 0i+2 fails, then, for all

p andq, Majority(p, Oi, 0 -1,0i+2, Vp) returns the same value as Majority(q, Oi, 0i- 1,0i-2. Vq).

Proof Clear from the algorithm. E

Theorem 5.6 Figure 4 gives a 1-tolerant self-implementation of N-consensus for R-arbitrary

failures.

Proof Consider an execution E in which at most one of 01,02,.. 06 fails by R-arbitrary

and the remaining are correct. Claim 5.11 implies that 0) satisfies validity in E. Clearly,

either all of 01,02, and 03 are correct in E, or all of 04,05, and 06 are correct in E. In

9This implementation, and all other implementations for R-arbitrary failures in this paper, are gracefully

degrading. Graceful degradation for R-arbitrary failures is, however, almost trivial to achieve: it only
requires that, if all base objects are wait-free, then the derived object is also wait-free. For brevity, we omit
references to graceful degradation in this section.
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Oi : N-consensus objects (1 < i < 6)

Procedure Maj ority(p, 01,02,03, v)

countp[0..1], w: integer local to p
begin

countp[O..1] := (0,0)
for i := 1 to 3 do

w := f-propose(p,v, Oi)
countp[w] := countp[w]+l

if countp[O] > countp[1] then
return(O)

else return(1)

end

Procedure Propose(p, v, 0)
begin

v := Majority(p,01,0 2 ,03,v)
v Majority(p,0 4 ,0 5 ,0 6,v)
return(v)

end

Figure 4: 1-tolerant self-implementation of N-consensus for R-arbitrary failures

the latter case, Claim 5.12 implies that 0 satisfies agreement in E. In the former case,
Claims 5.11 and 5.12 together imply that 0 satisfies agreement in E. It is obvious that 0
satisfies integrity, and is wait-free in E. Thus, by Proposition 5.1, ( is correct in E. E

Given this 1-tolerant self-implementation, by Booster lemma (Corollary 4.2) we obtain
a t-tolerant self-implementation of N-consensus for R-arbitrary failures. However, the
resulting resource complexity is 0(t92g2 6), which is even higher than the complexity of the
implementation through translation mentioned above.

A more efficient recursive algorithm is presented in Figure 6. This algorithm implements
a t-tolerant N-consensus object ( from 01, a F 21-tolerant N-consensus object, 02, a
L -?J-tolerant N-consensus object, and the following (0-tolerant) N-consensus objects:

Ao[l ... 3t + 1J.Al [1... 3t + 1] and B[l... 4t + 1]. Figure 5 illustrates the order in which
the base objects of ( are accessed by a process proposing 0 on 0 (the access pattern for a
process proposing 1 on 0 is symmetrical).

Consider an execution E in which at most t base objects fail by R-arbitrary. Since 01
is ft-21-tolerant and 02 is Lt. 1J -tolerant, either 01 or 02 is correct in E. The algorithm
in Figure 6 is based on this key observation. We now sketch the intuition behind Figure 6.

22



02

B

Figure 5: Execution trace of a process proposing 0 on 0
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A process p executing Propose(p, vp, O) first executes f-propose(p, vp, O1); if 01 seems
correct to p, p adopts the value returned by f-propose(p, Vp. 01) for Propose(p. vp, 0). If
p detects that 01 failed, p uses 02 to determine the response for Propose(p. vp, 0).

Process p uses objects A0[1 ... 3t + 1], All... 3t - 1] and B[1 ... 4t + 1] to determine
whether 01 fails in E. 01 can fail in one of the following ways: (i) by returning a value
outside {0, 1, (ii) by returning a value v E {0, 1} that was not proposed by any process.
and (iii) by returning 0 to some processes and 1 to other processes. The first case is
overcome by using f-propose as a "filter". The second and third cases are detected by
using A,[1 ... 3t + 1] and B[1 ... 4t + 1] respectively.

Note that the failure detection provided by A0[1 ... 3t+ij, A 1 [1 ... 3t+l] and B[1 ... 4t+
11 is not perfect. 01 may seem correct to some processes, and these processes base their
decision on 01. Others processes may detect that 01 tailed and base their decision on 02.
The implementation in Figure 6 uses B to guarantee that both sets of processes decide on
the same value. We describe the implementation in Figure 6 by sketching how it overcomes
the different types of failures that 01 may exhibit:

* 0, returns a value that is not in {0, 1}. As before, procedure f-propose "filters" the
response to eliminate this problem.

* 01 returns a value that was not proposed by any process. Ao[1 ... 3t + 1] and
AI[1 ... 3t + 1] are used to detect that 01 failed, as follows.

Process p executes f-propose(p, vp, Ap[i]), for 1 < i < 3t + 1, before executing
anslp := f-propose(p, vp,0 1). It can be shown that if 01 is correct in E. then all
correct objects in Aanslp [1 ... 3t + 1] are "set' to ans1p. Since a maximum of t objects
in Aalnlp[1 ... 3t + 1] may fail in E, p expects at least 2t + 1 objects to return ansip
when p accesses Aani,[1. .. 3t + 1]. If p gets fewer than 2t + 1 copies of ans1p. p
knows that 01 failed in E. Thus p uses 02 to reach the decision value.

* 01 may return 0 to some processes and 1 to others processes. B[1 ... 4t + 1] are used
to detect that 01 failed, as follows.

Immediately after executing ansip := f-propcse(p, vp, 01), p executes f-propose(p, ansip, B1i1)
for 1 < i < 4t+1. If0 1 is correct in E, no process q will execute f-propose(q, ansip, 3[i])
for 1 < i < 4t + 1. Thus, all correct objects in B[1 ... 4t + 1] will be "set" to ans

Since a maximum of t objects in B[1 ... 4t + 1] may fail in E, p expects at least 3t + 1
objects to return anslp when p accesses B[1 ... 4t + 1]. If p gets fewer than 3t + I
copies of ansip, p knows that 01 failed in E. Thus, p uses 02 to reach the decision
value.

If p detects that 01 failed in E, p uses 02 to reach a decision. Recall that it is possible
that some otht- process q did not detect 01's failure, hence Propose(q, Vq, 0) returned
anslq. In this rase, q gets at least 3t + 1 copies of anslq from B(1. .. 4t + 1]. To ensure
that p agrees with q in this case, p proposes to 02 the value vp, which is the majority value
that it got from B[1 ... 4t + 1]. Note that care is taken to ensure that v' is valid: p should
have received at least t + I copies of vp when p accessed A,,, [1 ... 3t + 1. We now prove:
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Ao [I1.. 3t + 11, Al[I.. 3t + 11, B[1 ...t + 11 -. (0-tolerant) N-consensus objects
01 : rL--tolerant N-consensus object
02: [!-21J-tolerant N-consensus object

Procedure Propose (p, vp, 0)
countp[0.. 1], WitnessCount [O.. 1), beliefp, ans1p, ans2p, v, i, w int eger local to p

begin
I countp[O.11, WitnessCount[0..1] := (0,0)

2 Phase 1: for i:=l1to 3t +1do
3 w := f -propose (p, v, A,P 1)
4 if w = vp then countp[vp] : countp[vp]+1

5 Phase 2: ans1p := f -propose (p, vp,01)

6 Phase 3: for i:=l1to Vt+ 1do
7 w := f-propose(p, ans1p, B[i])
8 WitnessCountp [w] :=WitnessCountp [w 1+1

9 Phase 4: for i:=l1to 3t +1do
10 w := f-propose(p,v,A~u-[i])

11 if w = Vp- then countp[-v] := countp[-,-]±1

12 Phase 5: Choose beliefP such that WitnessCountp[belief] > Witne ssCountp [belte fpj
13 if WitnessCountp[beliefp] > 3t + 1 and countp(belief] 2t + 1 then
14 return(beliefp)
15 if Witne ssCountp [belie fp] > 2t + 1 and countp[beliefp] t + 1 then
16 v/ :beliefp
17 else :v,

18 ns2 :=propose(p, v,02)

19 return(ans2p)
end

Figure 6: Efficient t-tolerant self-implementation of N-consensus for R-arbitrary failures
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Theorem 5.7 Figure 6 gives a t-tolerant self-implementation of N-consensus for R-arbitrary

failures of resource complexity 0(t log t).

Proof Consider an execution E in which at most t base objects fail by R-arbitrary. and

the remaining are correct. We show below, through a series of claims, that 0 is correct in

E; or equivalently (by Proposition 5.1), that ( satisfies validity, agreement, and integrity,

and is wait-free in E.

Proposition 5.1 is used very often in this proof. For brevity, we omit references to it.

Claim 5.13 If 01 fails in E, then 02 is correct in E.

Proof Suppose both 01 and 02 fail in E. Since 01 is derived from a 21-

implementation, at least Ft- 11 + 1 base objects of 01 must fail in E. Similarly, at least

L ]J + 1 base objects of 02 must fail in E. Thus a total of ft_-11 + L--J + 2 > t base

objects of 0 fail in E, a contradiction to the definition of E.

Claim 5.14 If 01 is correct in E, 0 satisfies validity and agreement in E.

Proof Suppose 01 is correct. Thus, O1 satisfies validity and agreement. By the agreement

property of 01, anslp = anslq for all p,q. (Let v = anslp.) Thus every process proposes

the same value v to every B[i] in Phase 3. Since at most t objects in B[1... 4t + 1] fail.

beliefp = v and WitnessCountp[beliefpJ > 3 + 1 (for every p).

By the validity property of 01, some process q will have invoked propose(q, v,0 1 )

before any process gets the response u from 01. This implies that q will have finished Phase

1 before any process begins Phase 3. Since at least 2t + 1 objects in A,[1 ... 3t + 1] are

correct, it follows that for all p, countp[vI> 2t + 1 by the end of Phase 4 of p. Thus we have

WitnessCountp'beliefp] _> 3t + 1 and countp[beliefp] > 2t + 1 (for every p). Hence every p

decides v (the proposal of q) by line 14. 0

Claim 5.15 If 01 fails in E, 0 satisfies validity and agreement in E.

Proof Suppose 01 fails. Then by Claim 5.13, 02 is correct, and thus, satisfies validity and

agreement. We need to consider two cases.

CASE 1 Suppose some process p returns by line 14. This implies that WitnessCountp[beliefp]
> 3t + 1 and countp[beliefp] > 2t + 1. Since at most t base objects fail, it follows that,

for every q, WitnessCountq[beliefp > 2t + 1 and countq[beliefpl > t + 1. By line 12, this

implies that beliefq = beliefp. Let val = beliefp. Since WitnessCountq[beliefq] > 2t + 1

and countq[beliefq] > t + 1, either q returns beliefq = val by line 14 and we have agreement

between p and q, or q sets v' to beliefq by line 16, making vq' equal to val. Thus every q,

that does not return by line 14, proposes v' = val on 02. By the validity property of 02,

ans2 q = val, and q returns val by line 19. Again we have agreement between p and q.
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Ao[1. ... 3t + 1], A, [1 ... 3t + 1], B[l ... Vt + 1]: (0-tolerant) N-consensus objects
01 P2111iitolerant N-consensus object
02 Lt2 1j-tolerant N-consensus object

Procedure Propose(p, VP, 0)
countp[o..1], WitnessCountp[O..11, behzefp, ans1p, ans2p, vp', z, w :integer local to p

begin
1 countp[O..1], WitnessCount[.1] := (0,0)

2 Phase1: for i:=l1to 3t +1do
3 w := f -propose (p, v,A,,[I)D
4 if w= VP then countp~p countp[vp]+1

5 Phase 2: ans1p : f-propose(p, vP, Oi)

6 Phase 3: for i:=lIto Vt+lIdo
7 w :=f-propose(p,ans1p,B[i])
8 WitnessCountp[w] :=WitnessCountp[w]1

9 Phase 4: for i:= 1to 3t +1do
10 w ::f-propose (p, v,A:F-[Z*])
11 if w = V- then countp[;5p] :=countp[p]±i

12 Phase 5: Choose beliefp such that WitnessCountp[beliefp] > WitnessCountp[beliefp]
13 if Witne ssCountp [belie fp] 3t + 1 and countp[beliefp] : 2t + 1 then
14 return (beliefp)
15 if WitnessCount[belief] 2t + 1 and countp[belief] > t + 1 then
16 v: beliefp
17 else := v
18 ans2p : propose(p, Vp,0 2 )
19 return(ans2p)

end

Figure 6: Efficient t-tolerant self-implementation of N-consensus for R-arbitrary failures
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Corollary 5.2 The following object types have t-tolerant self- implementations for R-arbitrary
failures: (2-process) fetch&add, queue, stack, test&set, and (N-process) compare&swap,
move, swap.

6 Tolerating non-responsive failures

So far we have considered base objects that remain responsive (i.e., wait-free) even if they
fail. Thus, a process can access a base object and afford to wait for a response before
proceeding to access the next one. In other words, base objects can be accessed sequentially.
With non-responsive failures, waiting on a base object that fails could block the process
forever. Hence, to tolerate non-responsive failures, we allow a process to access base objects
"in parallel"1 2 , so that it can complete its operation on the derived object even if some of
the base objects fail and never respond.

As we will see, this ability to access base objects in parallel allows us to build t-tolerant
implementations of register, even for arbitrary failures. In contrast, we show that N-consensus
does not have a (deterministic) implementation that tolerates the crash of a single base ob-
ject even if we do not restrict the number and the type of the base objects that can be
used in the implementation. However, randomization circumvents this impossibility result.
Every object type has a t-tolerant randomized implementation from register, even for
arbitrary failures.

The impossibility results of this section are proved by reducing the consensus problem
[FLP851 to the problem in question. The consensus problem for a system of N processes is
defined as follows. Each process pi has an initial binary input vi. The consensus problem
requires each correct process to reach the same (irrevocable) decision value d such that
d E {vl,v 2,... ,vN}.

Theorem 6.1 There is no 1-tolerant implementation of 2-consensus for crash failures.

Proof Suppose, for contradiction, there is a finite list C = {T,, T2.... ,T} of object
types such that there is a 1-tolerant implementation I of 2-consensus from C for crash
failures. We will use this implementation to solve the consensus problem among a set of
I + 2 processes, one of which may crash, in a system in which processes communicate only
through registers.

Consider the concurrent system S consisting of 1 + 2 processes named {P1 P2} U {qj II <
j < 1}, and 41 + 1 registers named {invocation(i,j), response(j,i) 11 < i < 2, 1 < j <
1} U {decision}. We claim that the consensus problem is solvable in S even if one process
crashes. The following is the protocol. Let vi E {0, 1} be the initial input of pi. The basic
idea consists of two steps:

"However, we do not allow a process to invoke an operation on a base object if its previous invocation on
that object is still pending.
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1. Use a set {ol, o2,..., oi} of base objects of type T 1 , T 2 ,. . ., T, and the implementation
1, to construct a 2-consensus object ( = (ol,. .  o) that tolerates the crash of
one of its base objects.

2. In system S, process qj (1 < J < 1) simulates the base object oj, and process pi
(i = 1, 2) simulates the execution of Propose(pi, vi, 0) on the derived object (.

The details are given below.

Initialize all 41 + 1 registers to 1. Process pi simulates Propose (pi, vi, 0) as follows.
If Propose (pi, vi, (9) requires Pi to invoke some operation op on oj, pi appends op to the
contents of invocation(i, j). If Propose (pi, vi, () requires pi to check if a response to some
outstanding invocation on oj has arrived, pi checks if a response has been appended by qj
(which simulates oj) to response(j, i). If Propose (pi, vi, () returns a value v, pi first writes
v in decision register, and then decides v. In addition to (and concurrently with) the above,

Pi periodically checks if the register decision contains a non-I value. If so, it decides that
value.

Process qj simulates the base object oj as follows. Periodically qj checks the registers
invocation(1,j) and invocation(2,j), in a round-robin fashion. If qj notices that some op-
eration op has been appended to invocation(i, j), qj simulates the application of op to oj
and appends the corresponding response to response(j, i). In addition to (and concurrently
with) the above, qj periodically checks if the register decision contains a non-I value. If so.
it decides that value.

The above simulation protocol solves the consensus problem among the I + 2 processes
in the concurrent system S, even if one of them crashes. To see this, consider any execution
E of the concurrent system S in which at most one process crashes. Let E' be the corre-
sponding "simulated" execution of the derived object (. Note that the crash of one process
in S corresponds to the crash of at most one (simulated) base object of the (simulated) de-
rived object (9 in E'. Since 1, the 2-consensus implementation from which ( is derived, is
1-tolerant for crash, 0 is correct in E' (despite the crash of one of its base objects). Thus,
by Proposition 5.1, ( satisfies integrity, validity, and agreement, and is wait-free in E'.
Since 0 is wait-free (in E'), if pi does not crash, Propose(pi, vi, () eventually returns some
value v (in E'). Since ( satisfies integrity, v is a binary value. Since ( satisfies validity, v
is either v, or v 2. Since ( satisfies agreement, Propose (pi, vi, (9) and Propose (P 2 , v 2 , (9)
never return different values. Thus, from the protocol, p1 and P2 do not write different
values in register decision. Since at most one process crashes, at least one of P, and P2 will
eventually write a binary value v in register decision. Since all correct processes periodically
check the decision register, they eventually decide v.

We showed that we can use I to solve the consensus problem in system S, and this
contradicts the impossibility result of Louis and Abu-Amara [LAA87]. El

We can strengthen the above result as follows. Suppose that at most one base object
may fail, and it can only do so by being "unfair" (i.e., by not responding) to at most
one process. Furthermore, suppose that the identity of this process is a priori "common
knowledge" among all the processes. Even with this extremely weak model of object failure.
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called 1-unfairness to a known process, we can prove the following:

Theorem 6.2 There is no 1-tolerant implementation of 2-consensus for 1-unfairness to
a known process.

Proof (sketch) Suppose, for contradiction, there is a finite list £ = {TI, T2,. . ., T } of
object types such that there is a 1-tolerant implementation I of 2-consensus from £ for
1-unfairness to, say, process pl. Consider the concurrent system S, as defined in the proof
of Theorem o.1. Suppose processes in S run the same simulation protocol as in that proof.
There are two cases:

1. No process qk crashes. In this case, it is easy to see that processes in S solve the
consensus problem (exactly as before).

2. Some process qk crashes. In this case, processes in S may fail to solve the consensus
problem for the following reason. The crash of qk corresponds to the crash of the
simulated base object ok. This object is now potentially unfair to both pl and P2. But
I tolerates unfairness to only Pi. So the derived 2-consensus object 0 of I is not
necessarily correct.

To circumvent the problem that arises in Case 2, we modify the simulation protocol
as follows: If Propose (p2, v 2 , 0) requires P2 to invoke some operation op on some oj, p2
appends op to the contents of invocation(2,j), as before, but now it also waits until a
corresponding response is appended to response(j, 2) by process qj. The rest of the simu-
lation protocol remains exactly as before. We now reconsidcr the above two cases with the
modified simulation protocol:

1. No process qk crashes. As before, it is easy to see that processes in S solve the
consensus problem.

2. Some process qk crashes. If P2 attempts to access ok after the crash of qk, it will
simply wait for the response forever 13 . Therefore, at worst, to process pl, the crash
of qI, looks like ok is unfair to pl, and P2 is extremely slow. Since I tolerates the
unfairness of one base object to pl, 0 remains correct. Since pi does not crash (we
assumed that only one process in S crashes, and this is qI), Propose(pl, vl, 0) returns
a value that p, writes into decision. The rest of the proof is as in Theorem 6.1.

Again, we have a contradiction to the impossibility result in [LAA87].

From the above two theorems we have:
"3Of course, it also continues to read the decision register periodically, and decides if a non-I value is

found there.
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Corollary 6.1 If type T implements 2-consensus, then there is no 1-tolerant implemen-
tation of T for crash or for 1-unfairness to a known process.

From [Her9l] and this corollary, we conclude that compare&swap, fetch&add, move, queue,
stack, sticky-bit, swap, testkset, and several other common types do not have a 1-
tolerant implementation for crash or 1-unfairness to a known process. In contrast to the
above impossibility results we show

Theorem 6.3 boolean register and unbounded register have t-tolerant self-implementations
for arbitrary failures.

This follows immediately from the following lemma and the fact that one can implement
a multi-reader, multi-writer n-valued (resp. unbounded) atomic register using 1-reader,
1-writer, boolean (resp. unbounded) safe registers.

Lemma 6.1 A t-tolerant 1-reader, 1-writer, n-valued (resp.. unbounded) safe register can
be implemented from 5t + 1 1-reader, 1-writer, n-valued (resp. unbounded) safe registers, at
most t of which may ezperience arbitrary failures.

Proof (sketch) Informally, the reader invokes a 'read' on each base register (the reader
delays this read if its previous read on the base register is still pending). When it gets a
response from 4t + 1 distinct registers, it returns the majority value. If there is no majority,
it returns an arbitrary value. To write a value v, the writer invokes a 'write v' on each
base register (again, this write is delayed if the previous write on the base register is still
pending). The writing completes when 4t + 1 base registers return an "ack". It is easy to
verify that the above scheme implements a safe register that is correct even if at most t

base registers experience arbitrary failures. 0

Randomized implementations of N-consensus from register are well known (for ex-
ample, see [Asp90]). Together with Theorem 6.3, this implies that randomized t-tolerant
implementations of N-consensus from register exist for arbitrary failures. Combining
this with Theorem 6.3 and the universality results of [Her9l, Plo89], we have

Theorem 6.4 Every finite object type has a randomized t-tolerant implementation from
boolean register for arbitrary failures, and every infinite object type has a randomized
t-tolerant implementation from unbounded register for arbitrary failures.

Thus. if a finite (resp. infinite) object type T implements boolean register (resp.
unbounded register), then T has a randomized t-tolerant self-implementation for ar-
bitrary failures. This implies that compare&swap, fetch&add, queue, move, stack,
swap, test&set have t-tolerant randomized self-implementations, even for arbitrary fail-

ures!

Our next result concerns the nature of arbitrary failures. It states that the problem
of tolerating arbitrary failures can be reduced to two strictly simpler problems: tolerating
R-arbitrary failures and tolerating omission failures.
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Lemma 6.2 (Decomposability of arbitrary failures) A type T has a t-tolerant self-implementation
for arbitrary failures if and only if T has a t-tolerant self-implementation I," for R-arbitrary
failures, and I, for omission failures.

Proof (sketch) The "only if" direction is obvious. To prove the "if" direction, define
1(ol, 02,..., Onm) = Io(Ia(O,. . ., Om),... ,Ia(O(n1)m-1,. . ,Onm)). It can be verified that
I is a t-tolerant self-implementation of T for arbitrary failures. E

7 Graceful degradation for benign failure models

We have seen that every object type has a t-tolerant implementation for R-crash and R-
omission failures. But what if we also require the implementation to be gracefully degrading?
The results are mostly negative for R-crash, but not so for R-omission.

7.1 R-crash

Consider a system that supports a given set S of "hardware" objects. Assume that these
objects may fail, but if they do, they are guaranteed to only fail by R-crash. Suppose we
wish to implement an object 0 of type T using only objects in S, and that we require 0
to function correctly only in the absence of failures. However, when objects in S fail by
R-crash, we would like 0 to fail only by R-crash. This last requirement is desirable for two
reasons:

" The benign failure semantics of R-crash are desirable.

" Such an object O appears like any other hardware object of the system. In other
words, with this "software implementation" of C, the system would be no different.
in functionality and failure semantics, from one that directly supports all the objects
in S U {0} in hardware.

In our terminology, we are seeking a gracefully degrading implementation of T for
R-crash from the types (of the objects) in S. Unfortunately, as we show below, many
object types do not have such implementations, even from very powerful object types.
This negative result implies that, in many cases, the simple and desirable R-crash failure
semantics cannot be achieved.

An object type T is order-sensitive if it is deterministic and the following holds: There
exists a state S in G(T), operations op, op' (not necessarily distinct) in OP(T), and values
u, v, u', v' such that each of (op, u),(op', u') and (op', v'),(op, v) is consistent from the state
S of T, and u $ v and u' : v'. Intuitively, when an object 0 is in the state S, and
two processes p and q invoke operations op and op' concurrently on 0, they can, based
on the return values, determine the order in which their operations are linearized, queue
is an example of an order-sensitive object type. To see this, let S be the state in which
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there are two elements 5 and 10 in the queue (5 at the head), and let both op and op'
be deq. Now we have u = 5, u' = 10, v' = 5, and v = 10. Thus u 4 v and u' : v'.
as required. compaxe&swap, N-consensus, stack, test&set are some other examples of
order-sensitive object types. An object type is non-order-sensitive if it is deterministic and
not order-sensitive. Examples of non-order-sensitive types include register, sticky-bit.
move, and swap.

Theorem 7.1 There is no gracefully degrading implementation of any order-sensitive ob-
ject type for R-crash from any list of non-order-sensitive object types.

Proof Suppose there are T, C, and I such that T is an order-sensitive type, L =

{T 1 , T2, ... , Tn } is a list of non-order-sensitive types, and I is a gracefully degrading imple-
mentation of T from L for R-crash. We arrive at a contradiction after a scries of claims
involving bivalency arguments [FLP85] and indistinguishable scenarios.

Let 0 = I(O1,02,.O), and op, op',Su,v,u',v' be as given in the definition of
an order-sensitive type. Consider the concurrent system consisting of two processes p and
q, and the shared object 0 (implemented from 01,02,... ,On). Define the configuration
(at an instant t) as the tuple (Sp, Sq, So) where Sp, Sq, and S, are the states of process p.
process q, and object 0 respectively (at the instant t). Let Co denote the configuration in
which 0 is in state S, and p, q are about to execute Apply(p, op, 0) and Apply(q, op'. 0)
respectively.

Claim 7.1 Suppose all base objects are correct. For any interleaving of the steps in the
complete executions of Apply(p, op, 0) and Apply(q, op'. 0), either Apply(p, op. 0) returns
u and Apply(q, op', 0) returns u', or Apply(p, op, 0) returns v and Apply(q, op', 0) returns

v.

Proof In the linearization of the execution history of object 0, cither Apply(p. op, 0) imme-
diately precedes Apply(q, op', 0), or Apply(q, op', 0) immediately precedes Apply(p. op. 0).
This, together with the definitions of u, u', v, v', and the fact that T is a deterministic type.
trivially imply the claim. [l

Let C denote a configuration reached from Co after some interleaving of (partial) exe-
cutions of Apply(p, op, 0) and Apply(q, op', 0). We say C is X-valent if, in the absence of
base object failures, Apply(p, op, 0) returns X. no matter how the steps of Apply(p. op. 0)
and Apply(q, op', 0) interleave when execution rcsumcs from C. By Claim 7.1, if C is X-
valent, either X = u or X = v. C is monovalent if C is either u-valent or v-valent. C is
bivalent if it is neither u-valent nor v-valent.

Claim 7.2 Co is bivalent.

rroof Starting from C0 , if p completes all the steps of Apply(p, op, 0) before q starts
Apply(q, op', 0). then Apply(p, op, 0) returns u. Thus Co is not v-valent.
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Similarly, starting from Co, if q completes all the steps of Apply(q, op', 0) before p starts
Apply(p, op, 0), then Apply(q, op', 0) returns v'. Thus, by Claim 7.1, when Apply(p, op., ()
completes, it returns v. Thus Co is not u-valent.

Since Co is neither u-valent nor v-valent, it is bivalent. [

We say C' is a reachable configuration from C, if, starting from the configuration C.
there is some interleaving of the steps of p and q such that C' is the configuration at the
end of that interleaving. Given a configuration C, let C(p) denote the configuration that
results when p takes a single step of Apply(p, op, () from C. C(q) is similarly defined.

Claim 7.3 There is a bivalent configuration Cit reachable from CO such that C,,it(p) and
C, it(q) are both monovalent.

Proof Interleave the steps of Apply(p, op, O) and Apply(q, op',O) as shown in Figure 7.
Since ( is wait-free, the repeat... until loop in the figure must terminate after a finite number
of iterations. Let Cct be the value of C just when the loop terminates. It is easy to verify
that Cit satisfies the properties required by the claim. C

C:= Co

repeat
if C(p) is bivalent then

C := C(p)
if C(q) is bivalent then

C := C(q)
until (C(p) is monovalent)A(C(q) is monovalent)

Figure 7: Reaching a critical bivalent configuration

Since Cit is bivalent, CC,it(p) and CC,t(q) cannot both be X-valent, for the same X.
Thus, either Cjt(p) is u-valent and Ci,. 1t(q) is v-valent, or Ceit(p) is v-valent and Co,it(q)
is u-valent. Without loss of generality, we will assume the former.

Claim 7.4 The enabled steps of p and q in Cit access the same base object.

Proof Suppose not. Then (Ce.it(p))(q) and (Ccit(q))(p) are identical configurations, and
yet, the former is u-valent and the latter v-valent. This is impossible since u :0 v. 0

Assume that Ok is the base object mentioned in the above claim, and Apply(p, oper, Ok).
Apply(q, oper', Ok) are the enabled steps of p and q respectively in Cei. Since Ok is an ob-
ject of a non-order-sensitive type, either Apply(q, oper', Ok) returns the same value whether
applied in Cit or Cit (p), or Apply(p, oper, Ok) returns the same value whether applied in
C , or Ct,. t(q). In the following, we will deal with the former case. The latter case can be
handled similarly, and is omitted.
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Claim 7.5 Consider

Scenario S1 (Starts from the configuration Cit)

1. Process q takes the step Apply(q, oper', Ok).

2. Process p completes the execution of Apply(p, op, 0).

3. All base objects 01, 02,..., 0, fail by R-crash.

4. Process q resumes and completes the execution of Apply(q, op', (9).

Then Apply(p, op, () returns v and Apply(q, op', () returns v'.

Proof Since q takes the step from Cit, and C it(q) is v-valent, and no base object failures

occur before p completes the execution of Apply(p, op, (9) in Item 2, Apply(p, op, (9) returns
v in Item 2 of the scenario.

Suppose Apply(q, op', () returns 1. Since I is gracefully degrading, ( must either

be correct or fail by R-crash. Given that Apply(p, op, () returns a non-- response, this

requires that Apply(p, op, (9) precedes Apply(q, op', () in the linearization order. Doing so.

however, implies that (op, v) is a sequential execution from S consistent with T. This is

false since (op, u) is the only sequence consistent from the state S of T, and v : u. Thus

Apply(q, op', (9) cannot return I.

Suppose Apply(q, op', () returns w where I 5 w : v'. Since in the linearization, ei-

ther Apply(p, op, (9) precedes Apply(q, op'. (9), or Apply(q, op', (9) precedes Apply(p. op. (9).
it follows that either (op, v),(op', w) or (op', w),(op, v) is a sequential execution from S con-

sistent with T. This is false since (op, u),(op', u') and (op', v'),(op, v) are the only sequences

consistent from the state S of T, and u 0 v, w : v' : v.

We conclude that Apply(q, op', (9) must return v'. 13

Claim 7.6 Consider

Scenario S2 (Starts from the configuration Cit)

1. Process p takes the step Apply(p, oper, Ok).

2. Process q takes the step Apply(q, oper', Ok).

3. Process p resumes and completes the execution of Apply(p, op, 0,).

4. All base objects 01,02,..., 0n fail by R-crash.

5. Process q resumes and completes the execution of Apply(q, op', (9).

Then Apply(p, op, () returns u and Apply(q, op', () returns v'.
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Proof Since p takes the step from Cit, and Cit(p) is u-valent, and no base object failures
occur before p completes the execution of Apply(p, op, 0) in Item 3, Apply(p, op, (9) returns
u in Item 3 of the scenario. Since S2-qS1, Apply(q, op', 0) returns v' as in S1. El

Neither (op, u),(op', v') nor (op', v'),(op, u) is a sequence consistent from the state S of
T. Hence the execution in Claim 7.6 is not linearizable. Thus the failure of (9 in S2 is not
by R-crash. We conclude that I is not a gracefully degrading implementation for R-crash.
a contradiction which concludes the proof of Theorem 7.1. 0

Preserving the failures semantics of the underlying system is a desirable property of
an implementation. For R-crash, the above theorem shows that this property is often not
achievable: implementations necessarily amplify the R-crash failures of base objects. For
example, consider a system that supports registers and sticky-bits in "hardware". In such
a system, any object can be implemented [Plo89], including (for example) queues. Suppose
we are given the following guarantee: if any of the given registers or sticky bits fail, they fail
only by R-crash. Can we implement a queue that cannot fail more severely than R-crash?
The above theorem shows that this cannot be done.

Requiring a derived object to inherit the R-crash semantics of its base objects is even
more difficult if we add the requirement that the derived object be 1-tolerant: Even if we do
not restrict the types of primitives available in the underlying system, such implementations
do not exist for most objects of interest. This is shown by the theorem below.

Theorem 7.2 There is no 1-tolerant gracefully degrading implementation of any order-
sensitive object type for R-crash.

Proof Suppose there are T, C, and I such that T is an order-sensitive type, £ =

{T1, T2 ,..., T.} is a list of types, and I is a 1-tolerant gracefully degrading implementation
of T from C for R-crash. We arrive at a contradiction after a series of claims involving
indistinguishable scenarios. Let 0 = 1(01,02,.. .O), and op, op', S, u, v, u',v' be as
given in the definition of order-sensitive types. Suppose ( is in state S, and p, q are about
to execute Apply(p, op, 0) and Apply(q, op', () respectively.

Claim 7.7 Suppose all base objects are correct. For any interleaving of the steps in the
complete executions of Apply(p, op, () and Apply(q, op', 0), either Apply(p, op, () returns
u and Apply(q, op', () returns u', or Apply(p, op, () returns v and Apply(q, op', () returns

v"

Proof Same as Claim 7.1. El

Claim 7.8 There exists a (possibly empty) sequence a of steps of p and a step s of p such
that the following Scenarios S1 and S2 are possible.

Scenario S1 (scenario starts with 0 in state S)

1. Process p initiates and partially executes Apply(p. op. () by completing the steps in a.
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2. Process q initiates and completes (all the steps of) Apply(q, op', 0), returning v'.

3. p completes the remaining steps of Apply(p, op, 0), returning v.

Scenario S2 (scenario starts with ( in state S)

1. p initiates and (partially) executes Apply(p, op, 0) by completing the steps in a s.

2. q initiates and completes (all the steps of) Apply(q, op', 0), returning u'.

3. p completes the remaining steps of Apply(p, op, (9), returning u.

Proof Clearly if process p executes no steps of Apply(p, op, 9) before proces q initiates and
completes Apply(q, op', 0), then Apply(q, op', () must return v'. Further. if p initiates . nd

completes all the steps of Apply(p, op, 0) (let 0 be this sequen..e of steps) before q initiates

and completes Apply(q, op', 0), then Apply(q, op', () must return u'. Together with Cia'ia
7.7 by which Apply(q, op', 0) must return either u' or v', the above implies that there exists

a sequence a of steps and a step s such that a.s is a prefix of 13 tor which the claim holds.
0

Hereafter we will assume Ok is the base object accessed by p in step s.

Claim 7.9 Consider

Scenario S3 (scenario starts with ( in state S)

1. p initiates and (partially) executes Apply(p, op, () by completing the steps in a.s.

2. q initiates and completes (all the steps of) Apply(q, op', 9), returning u' (as in S2).

3. 01,02,.. .,0. fail by R-crash.

4. p completes the remaining steps of Apply(p, op, 0).

Then Apply(p, op, () returns u.

Proof Suppose Apply(p, op, () returns I. Since I is gracefully degrading, ( must either
be correct or fail by R-crash. This requires, given that Apply(q, op', () returns a non-A_
response, that Apply(q, op', 0) precede Apply(p, op, () in the linearization order. Doing so.
however, implies that (op', u') is a sequential execution from S consistent with T. This is
false since u' # v', T is deterministic, and (op', v') is a sequential execution from S consistent
with T. Thus Apply(p, op, 0) cannot return i_.

Suppose Apply(p, op, () returns w where 1 0 w 0 u. Since in the Li earization, ei-
ther Apply(p, op, 0) precedes Apply(q, op', () or Apply(q, op', 0) precedes Apply(p, op, 0),
it follows that either (op, w),(op', u') or (op', u'),(op, w) is a sequential execution from S con-
sistent with T. This is false since (op, u),(op', u') and (op', v'),(op, v) are the only sequences
consistent from the state S of T, and w u, u' - v'.

We conclude that Apply(p, op. (9) must return u.
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Claim 7.10 Consider

Scenario $4 (scenario starts with 0 in state S)

1. p init.tes and (parially) executes Apply(p, op, 0) by completing the steps in a.s.

2. Ok fails by R-crash.

3. q initiates and completes (al the steps of) Apply(q, op', 0).

4. Qi..,Ok~- andOk-i .... 0,, also fail by R-crash.

5. p completes the remaining steps of Apply(p. op. 0).

Then Apply(p, op, 0) returns u and Apply(q, op' , 0) returns u'.

Proof Clearly S4:PS3. Therefore, as in S3, Apply(p, op, 0) returns u in S4. Since I is 1-
tolerant. and since only Ok has failed by the completion of Apply(q, op', 0). Apply(q, op' , .Q)
must return a non-I response. From the definitions of u. u', v,. v , it is easy to verify that
the only non-I response that satisfies linearizability is u'.

Claim 7.11 Consider

Scenario S5 (scenario1 starts with 0 in state S)

1. p initiates and partially executes Apply(p. op, 0) by completing the steps "n 0.

2. Ok fails by R-crash.

3. q initiates ana completes (all the steps of) Apply(q, op', 0).

4. 01 .... Ok-i and Ok-1,...,O also fail by R-crash.

5. p completes the remaining steps of Apply(p, op, 0).

Then Apply(p. op. 0) returns u.

Proof Clearly SS qS4. Therefore Apply(q, op', 0) returns u' as in S4. By similar arguments
as in Claim 7.9. it can be shown that Apply(p. op, 0) returns u.

Claim 7.12 Consider

Scenario S6 (scenario starts with 0 in state S)

I. p initiates and partially executes Apply(p, op, 0) by completing the steps in a

2. q initiates and completes (all the steps of) Apply(q, op' , 0).

3. All base objects 01, ...... O fail by R-crash.
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4. p completes the remaining steps of Apply(p, op, (9).

Then Apply(p, op, 0) returns u, and Apply(q, op', 0) returns v'.

Proof Since S6 -p S5, Apply(p, op, 0) returns u as in S5. Since S6 ;q S1, Apply(q, op', (9)

returns v' as in S1. El

Neither (op, u),(op , v') nor (op' , v'),(op, u) is a sequence consistent from the state S of
T. Hence the execution in Claim 7.12 is not linearizable. Thus the failure of (9 in S6 is not
by R-crash. We conclude that - is not a gracefully degrading implementation for R-crash.
a contradiction which concludes the proof of Theorem 7.2. El

The above discussion raises some questions on the "practicality" of the R-crash model:
Even if "hardware" objects fail by R-crash, "software" objects usually don't. The R-
omission model defined in this paper does not have this serious limitation. In fact, for
any t > 0, every N-process object type has a t-tolerant gracefully degrading implementation
from any universal list of types. In other words, implementations preserving the R-omission
semantics of the underlying system always exist. This is a formal justification for adopting
the R-omission model of failure. These results are presented in the next section.

7.2 R-omission

The object type N-consensus is order-sensitive. By Theorem 7.2, N-consensus has no
t-tolerant gracefully degrading implementation for R-crash. In contrast, N-consensus has
such an implementation for R-omission (Theorem 5.2 in Section 5). Further. we can show

Theorem 7.3 register has a t-tolerant gracefully degrading self-implementation for R-

omission.

Theorems 5.2 and 7.3 can be combined with the universal constructions in [Her9l. JT92]
to obtain the following result for R-omission.

A list C of object types is N-universalif every N-process object type has an implemen-
tation from L. An example of a N-universal list is (N-consensus with reset, register).

Theorem 7.4 Every N-process object type has a t-tolerant gracefully degrading implemen-
tation from any N-universal list of object types for R-omission.

8 Related work

In an indepen, it work, Afek et al. consider the problem of coping with shared memory
subject to mer, ... j*ilures [AGMT92]. Informally, each failure is modeled as a faulty write.
The following !tilure models are considered:
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A. There is a bound m on the total number of faulty writes.

B. There is a bound f on the total number of data objects that may be affected by memory
failures, and a bound k on the number of faulty writes on each faulty object. A
different model is obtained for k = ox.

In our terminology, these models are responsive. The second one, with k = oc, corresponds
to our R-arbitrary failure model.

[AGMT92 focuses on fault-tolerant implementations of the following types of ob-
jects: safe, atomic, binary, and V-valued register from various types of registers; N-
process test&set from N-process test&set and bounded register; and N-consensus
from read-modify-write (RIMW). [AGMT92] also gives a universal fault-tolerant imple-
mentation from unbounded RMW, based on Herlihy's universal implementation. The main
differences between [AGMT92] and this paper are as follows:

1. [AGMT92] does not consider any non-responsive failure model.

2. Amongst the responsive failure models, benign ones, such as R-crash and R-omission,
are also not considered in [AGMT92].

3. This paper does not consider models that bound the number of times faulty objects
can fail (in [AGMT92] each "faulty write" is counted as a failure).

4. The two approaches to modeling failures are fundamentally different. There is no
direct way to model benign failures, such as R-crash and R-omission failures, with
"faulty writes". On the otier hand, our approach-defining how each faulty object
deviates from its type-is not suited to handle Model A above.

5. This paper introduces the concept of graceful degradation, and presents several related
results, in particular, for R-crash and R-omission failure models. For R-arbitrary
failures, graceful degradation reduces to the "strong wait-freedom" concept considered
in [AGMT92].

6. The concept of fault-tolerant self-implementation, is a central theme of this paper.
Corollary 5.1 states sufficient conditions for their existence, and Corollary 5.2 lists
several types that have such implementations. In the Open Problems section of
[AGMT92 it is stated:

"It would be particularly interesting to implement memory-fault tolerant
data objects directly from similar, faulty objects, such as test-and-set from
test-and-set, without using atomic registers, or read-modify-write from read-
modify-write, without using an unbounded universal construction."

It is interesting to note that both of these types do have fault-tolerant self-implementations.
For bounded RthW, this is a direct consequence of Corollary 5.1. For N-process test&set.
one can combine the fault-tolerant implementation of test&set from test&set and
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bounded register [AGMT92], with the implementation of bounded register from

test&set [Jay93].

7. The existence of a fault-tolerant self-implementation of consensus, shown in this

paper, does not follow from the results in [AGMT92].

8. The fault-tolerant implementation of N-process test&set from test&set and bounded

register shown in [AGMT92], does not follow from our results (when N > 2).
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A Formal model

Our formal model is based on I/O Automata [LT88]. We use the model to make our
definitions of failure models (Appendix B) and fault-tolerant implementations (Appendix
C) precise. The implementations in the paper are described in the more intuitive Pascal-like
style. In the following, we borrow several definitions from in [HW90, Her9l]. There are
however some differences between our model and Herlihy's (Her9l]. Notable among these
are: (i) our addition of an explicit "crash" state for a process, (ii) the definitions of wait-
freedom, and implementation, (iii) the added assumption of fairness in our model, and (iv)
the definition of clocked concurrent systems.

A.1 I/O Automata

An I/O Automaton A is a non-deterministic automaton with the following components:

1. States(A) is a finite/infinite set of states, including a distinguished set of starting
states.

2. In(A) is a set of input events.

3. Out(A) is a set of output events.

4. Int(A) is a set of internal events.

5. Step(A) is a transition relation given by a set of tuples (s, e, s'), where s and s' are
states, and e is an event. Such a triple is called a step, and it means that an automaton
in state s can undergo a transition to state s' and that transition is associated with
event e.

If (s, e, s') is a step, we say e is enabled in state s. I/O Automata (abbreviated hereafter
as automata) must additionally satisfy the requirement that input, output, and intcrnal
events are disjoint, and every input event is enabled in every state.

An execution fragment of an automaton A is a finite sequence so, el, sle2, 2. en. s,,
or an infinite sequence so, e 1 , s 1, e2, s 2 ,. .. of alternating states and events such that (si. e i+ 1, si )

is a step of A. An execution is an execution fragment in which so is a starting state. A
history fragment of an automaton is the subsequence of events in an execution fragment of
the automaton. A history of an automaton is the subsequence of events in an execution. An
execution fragment E is fair if either E is finite, or E is infinite and every internal event or
an output event that is enabled in every state of a suffix of E occurs infinitely many times
in E.'4

A new automaton can be constructed by composing a set of compatible automata. A
set of automata are compatible if, no two of them share any internal or output events. That

14 Since this simple notion of fairness is adequate for our purpose, we do not need the general machinery

described in [LT88] for formulating fairness.
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is, for every A, B in the set, (Int(A) U Out(A))n(Int(B) U Out(B))= 0. A state of the
composed automaton S is a tuple of the ccmponents' states, and a starting state of S is
the tuple of the components' starting states. The set of output events of S, Out(S), is the
union of the sets of output events of the component automata. The set of internal events
of S, Int(S), is the union of the sets of internal events of the component automata. The
set of input events of S, In(S), is IN - Out(S), where IN is the union of the sets of input
events of the component automata. A triple (s, e, s') is in Step(S) if and only if, for all
the component automata A, one of the following holds: (1) e is an event of A, and the
projection of the step onto A is in Step(A), or (2) e is not an event of A, and the state of
A in s and s' is the same.

If H is a history of a composed automaton and A 1 , A 2,. •, Ak are component automata.
then HI{Al, A2 ,.... Ak} is the subhistory of H consisting of all events e, where e is an event
of one of A1,A 2 ,...,Ak.

A.2 Object type

An object type T is a tuple (N, OP, RES, G), where N is an integer greater than one, OP,
RES are sets of operations and responses respectively, and G is a directed finite or infinite
graph in which each edge has a label of the form (op, res) where op E OP and res E RES.
Intuitively, if 0 is an object of type T, then 0 supports the operations in OP and may be
shared by N processes (we say T is an N-process type). G specifies the expected behavior
of 0 in the absence of concurrent operations on 0.

The vertices of G are the states of T. One state of T is the initial state. A state s of
T is reachable if there is a path in G from the initial state to s. We assume that every state
of T is reachable. A sequence S =(opi, resi),(op2, res2), ... ,(opl, rest) is consistent from a
state s of T if there is a path labeled S in G from the state s. S is consistent with respect
to T if it is consistent from the initial state of T.

An object type T is total if for every state s of T, and every operation op E OP., there
is a response res such that there is an edge labeled (op, res) from s in G. All object types
studied in this paper are assumed to be total. T is deterministic if for every state s of
T and every operation op E OP, there is at most one edge from s labeled (op, res). T is
non-deterministic otherwise. T is finite if G is finite; T is infinite otherwise.

A.3 Processes and objects

An object is an automaton with two attributes: a unique name and a type. A process is an
automaton with a unique name. A process automaton P satisfies the following properties:

1. There is a distinguished state CRASHED(P) in States(P).

2. The event crash(P) is in In(P).

3. For every state s E States(P), (scrash(P),CRASHED(P)) is in Steps(P).
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4. The event crashed(P) is in Out(P), and is enabled in the state CRASHED(P).

5. if (CRASHED(P).e, s) is in Steps(P), then either e = crashed(P), or e is an input
event of P, and s = CRASHED(P).

The above conditions capture the notion that an adversary can crash a process at any
time by generating the input event crash(P) (see 2 and 3); and once it crashes, a process
remains crashed forever (see 5).

A.4 Clock

A clock is an automaton with a single state s, a single output event tick, and a single step
(s, tick, s). It has no input or internal events.

A.5 Concurrent system

A concurrent system consisting of processes P1, P2,..., Pn, and objects 01,02,. ,, is an
automaton composed from process automata P1 .... , P,, and object adtomata 01,... , OM.
We denote such a concurrent system by (P1 , P2 ,..-, P,; O 1 , 02,..., Om). A clocked concur-
rent system 15 consisting of P1,. .. , Pn, and objects 01,..., 0 m has an additional component.

the clock automaton C, and is denoted by (P1 , . -, Pn; 01,..., O,; C). The output events
of a process Pi include invoke(Pi,op, Oj), where op is an operation supported by the type
of Oj, and the input events of P include respond(Pi, res, Oj), where res is a response.

We refer to the events invoke(Pi,op, Oj) and respond(Pi, res, Oj) as invocations and re-
sponses respectively. An object Oj includes input events invoke(Pi, op, Oj), and output
events respond(Pi, res, Oj). Process and object names are unique, and no two automata

among processes and objects share any internal or output events. This ensures that the
process and object automata are compatible, and therefore, can be composed.

Let a be a sequence of events or a sequence of states and events (for example, a can
be a history or an execution). A response r matches an invocation i in a if i is the latest

event in a that precedes r such that the process and object names of i and r agree. An

operation in a is a pair of events, an invocation and its matching response. A relation <,
reflecting the partial "real time" order of operations in <, is defined as follows: op <, op'

if the response of op precedes the invocation of op' in a. Two operations unrelated by <,
are said to be concurrent in a. An invocation is pending in a if it has no matching response.

Complete(a) denotes the maximal subsequence of a in which there is no pending invocation.

A history H of a concurrent system S = (P 1 ,P 2 ,. .. ,Pn;0 1iO2,. .,Om) is k-well-
formed if, for each pair Pi, Oj, (HIPi) IOj begins with an invocation, and alternates invo-
cations and matching responses16 , and HIPi has at most k pending invocations in H. The

"5 Clock ensures that the system execution progresses, no matter how the other components in the system
behave. This simplifies the definition of wait-free implementations, especially wait-free implementations that
must tolerate non-responsive failures.

"'With the exception of the last invocation which may not have a matching response
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concurrent system S is k-well-formed if every history of S is k-well-formed. Intuitively, in
a k-well-formed concurrent system, if an invocation of a process P on object 0 is pending,
then P may not issue a new invocation on 0; however, P may issue an invocation on a

different object 0' as long as the number of pending invocations from P does not exceed
k. The need for a k-well-formed system, for k > 1, arises while d-signing implementations
that tolerate non-responsive failures of the underlying objects. For example, it is easy to
see that any implementation that has to be wait-free in spite of the crash of at most t un-
derlying objects must be at least (t + 1)-well-formed. We assume that a concurrent system
is 1-well-formed unless specifically mentioned otherwise.

In this paper, we restrict our attention to only fair executions of concurrent systems.
Thus, when we refer to infinite executions in this section and in Sections 3 and 4, we
implicitly assume they are fair.

A.6 Linearizability

The behavior of an object 0 in an execution E, denoted by B(0, E), is the subsequence of
invocation and response events of 0 in E.

A behavior B is linearizable with respect to type T if B can be extended to B' by append-
ing zero or more responses, and there is a sequence o = invoke(Pi, opl, 0), respond(Pil, res1 . 0),
invoke(Pi2 , op2, 0), respond(Pi2, res2 , 0), . invoke(Pit, opt, 0). respond(Pi, rest, 0). such

that:

1. a is a permutation of the events in Complete(B').

2. <BC<,.

3. (opi, resl), (op2, res 2),..., (opt, rest) is consistent with respect to T.

Informally, extending B to B' captures the notion that some operations in B may
have taken effect, although the responses have not appeared yet. The definition captures
the notion that processes appear to interleave at the granularity of complete operations
on 0 (as is evident from the form of a and Condition 1), the notion that this apparent
interleaving respects the real time order (Condition 2) and the semantics of the object type

T (Condition 3).

An object 0 is linearizable with respect to type T in a finite execution E of a concurrent
system if B(0, E) is linearizable with respect to T.

Object 0 is linearizable with respect to type T in an infinite execution E of a concurrent
system if and only if it is linearizable with respect to T in every finite prefix of E.

A.7 Wait-freedom

Let E be an execution of a concurrent system. An object 0 is wait-free in E if either (i) E
is finite, or (ii) every invocation on 0 by a process that does not crash in E has a matching
response.
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A.8 Correctness

An object 0 is correct in an execution E if one of the following holds:

* 0 is is wait-free in E. and 0 is linearizable with respect to its type in E.

* More than N(T) distinct processes have invocations on 0 in E.

The latter condition captures the notion th4 t an object need not exhibit any sane

behavior if accessed by more processes than the object is intended for.

An object 0 fails in an execution E if it is not correct in E.

A.9 Implementations

Let Obj(T) denote the universe of objects whose type is T. Let C = (T1,T 2 ,... ,T) be a list

of object types (Ti's are not necessarily distinct). A wait-free implementation of T from C
for processes P1 , P2 ,..., PN(T) is a function I : Obj(T 1 ) x Obj(T 2 ) x ... Obj(Tn) -* Obj(T)

satisfying the following conditions:

1. If 0 = 1(01,02 .. , .), the automaton of 0 has the structure of a concurrent sys-

tem: (F1 , F2 . .... FV(T); O1, 0 2,...,0,n), for some process automata F 1 , F2 ,. -FV(T).

2. Fi and Fi (i : j) have no common events.

3. f 0 = I(O1...On), each input event invoke(Pi, op, 0) of 0 is an input event of Fi:

each output event respond(Pi, res, 0) of 0 is an output event of Fi.

4. Each output event crashed(Pi) of Pi is matched with the input event crash(Fi) of Fi.

5. Let 01, 02,. •., 0, be any distinct objects of type T1, T2, ... , T, respectively, and 0 =
I(O1,... ,O . For every execution E of the clocked concurrent system (PI, P2 -. -P.N(T): 0: C).
if 01, 02,... , 0, are correct in E, then 0 is also correct in E.

In the above, the Fi's are called the front-ends, 0 = 1(01,02...,iO) is called a

derived object of the implementation I, and O1, 02,..., 0, are called the base objects of 0.
The front-end Fi models the procedure Apply (called by process Pi to execute operations

on a derived object) alluded to in the informal model of Section 2.

Condition 1 states that a derived object is constituted by base objects and access
procedures (front-ends).

Condition 2 captures the notion that the execution of a step of the implementation by

one process Pi cannot affect another process Pi.

Condition 3 captures the notion that (i) invoking an operation on 0, by process P

causes the front-end Fi to be activated, and (ii) the value returned by the front-end Fi is

the response of 0.
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Condition 4 condition captures our intuition that when a process Pi crashes, the front

end Fi of that process must stop executing.

Condition 5 ensures that a derived object behaves correctly when its base objects do.

All implementations studied in this paper are wait-free. Hereafter we write "imple-
mentation" as shorthand for "wait-free implementation". The implementation I is a self-
implementation if T 1 = T'2 = ... =T = T. The resource complexity of I is n. the number
of base objects that make up a derived object of the implementation.

B Models of failure

Failure models for objects were explained in Section 3 using the informal terminology of
Section 2. We present here the formal definitions of these failure models based on the formal
model developed in Appendix A.

The failure models fall into two broad classes: responsive and non-responsive. As we
will see, in most models of failure, an object 0 of type T that fails may return a response
that is not in RES(T). When a process P gets such a response from 0, it knows that 0 is
faulty. Thus, it is reasonable to assume that P does not invoke operations on 0 thereafter.
We restrict our attention to executions in which this assumption holds.

B.1 Responsive models of failure

Responsive failure models share the following property: even an object that fails in an
execution E, is wait-free in E.

B.1.1 R-crash

An object ( fails by R-crash in an execution E of a concurrent system iff it fails in E, and
the following hold in E:

1. ( is wait-free.

2. Every response from 0 either belongs to RES(T) or is I (where I is a distinguished
value not in RES(T), T being the type of 0).

3. If op <E op! and the response for op is I, then the response for op' is also I. This is

the "once I, everafter I" property of R-crash.

4. Recall B(O, E), the behavior of ( in E. Let B' be obtained by removing all operations 17

in B((, E) whose responses are I. B' is linearizable with respect to the type of (.
This property captures the notion that an object failing by R-crash behaves correctly

until it fails.
1 Removing an operation involves removing the invocation and the response of that operation.
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B.1.2 R-omission

An informal motivation for this model can be found in Section 3.1.2, and a formal justifi-
cation in Section 7.

An object 0 fails by R-omission in an execution E of a concurrent system iff it fails in
E, and the following hold in E:

1. 0 is wait-free.

2. Every response from 0 either belongs to RES(T) or is I (where I is a distinguished
value not in RES(T), T being the type of 0).

3. Let B' be obtained from B(0,E) by removing all response events that get I. Then
B' is linearizable with respect to the type of 0.

Property 3 captures the notion that a failed operation of P appears like an incomplete
operation. Also notice the subtle difference in the way we obtain B' from B(0, E) for R-
crash and for R-omission. We urge the reader to understand its implications on the failure
semantics of the two models.

B.1.3 R-arbitrary

An object fails by R-arbitrary in an execution E of a concurrent system iff it fails in E, and
is wait-free in E.

B.2 Non-responsive models of failure

Each responsive model of failure has its non-responsive counter-part. The difference is that,
with non-responsive failures, an object that fails in an execution E may not be wait-free in
E.

B.2.1 Crash

An object 0 fails by crash in an execution E of a concurrent system iff it fails in E, and
the following hold in E:

1. B(O, E) is linearizable with respect to the type of 0.

2. The total number of responses from 0 in E is finite.

Property 2 captures the notion that an object that fails by crash does so at some finite
point in the execution. Hence the number of times it will have responded in that execution
must be finite.
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B.2.2 Omission

An object (9 fails by omission in an execution E of a concurrent system iff it fails in E. and

B(O, E) is linearizable with respect to the type of 0.

B.2.3 Arbitrary

An object 0 fails by arbitrary in an execution E of a concurrent system iff it fails in E.

C Definition of fault-tolerant implementations

An implementation I of type T for processes P1 , P2 ,.. , PN(T) is t-tolerant forfailure model

M if every derived object 0 of I7 has the following property: In every execution of the
clocked concurrent system (Pi, P2,.-., PN(T); 0; C), if at most t base objects of 0 fail, and
they fail by M, then 0 is correct.

An implementation I of type T for processes P1 , P2 ,... PN(T) is gracefully degrading
for failure model M if every derived object 0 of I has the following property: In every

execution of the clocked concurrent system (Pi,P2 ,. . , PN(T); O;C), if all base objects of
0 that fail, fail by M, then either (9 is correct or it fails by M.

D Type definitions

Recall that an object type T is defined (Section 2) as a tuple (N, OP, RES, G), where N
is the number of processes supported by an object 0 of type T, OP is a set of operations

supported by 0, RES is a set of result values, and G is a graph giving the sequential

specification of 0. In this appendix, we specify OP, RES and G for most object types that
occur in the paper. The parameter N is unspecified: each choice of N results in a different
type. Similarly, in most cases, the initial state of G is not specified. A new type results for

each choice of an initial state.
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OP = I{cornpare&swap(v1, 09)IV'l. 2 are booleans}
RES = {0, I1}
Object State:

Xa boolean

compare&swap(vl, V2)

if X = v then
X := V2

return(X)

Figure 8: Compare&swap

OP { reset ()} U {propose(v) iv E f{0, 1}}
RES ={O, 1,ack}I
Object State:

X E {O, 1,11, intially I

propose(v)
if X =I then

X := v

retirn(X)

reset()
X := I
return(ack)

Figure 9: Consensus -with-re set
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OP = {fetch&add(v)uv is an integer}

RES = Set of integers
Object State:

X, an integer

f etch&add(v)

X := X + v
return(X)

Figure 10: Fetch&add

OP = {enq(v) v is integer} U {deq(}
RES = {vj v is integer} U {nil, ack}
Object State:

X, a sequence of integers

enq(v)

X:=X v

return(ack)

,Ieq()

if X is empty then

return(nil)
else if X = v - X' then

X :=X
return(v)

Figure 11: Queue
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OP = {read(i), write(v,iZ), move(i) Iv, i E {0, 111
RES = {,1,ack}
Object State:

Xo, X 1 E {0,1}

read(i)
if i = 0 then

return(Xo)
else return(X1 )

write(v, i)
if I = 0 then

XO :=v

else X, : v
return (ack)

move(l)
X, Xi

return(ack)

Figure 12: Move

OP ={write(v)J v is integer} U {reado}
RES ={vj v is integer} U {ack}
Object State:

Xan integer

read()
return(X)

write(v)

X := V
ret urn(ack)

Figure 13: (Unbounded) Regist;er

54



OP = {push(v)Iv is integer} U {pop()}
RES = {vj v is integer} U {nil, ack}
Object State:

X, a sequence of integers

push(v)
X:=X.v
return(ack)

pop()

if X is empty then
return(nil)

else if X = X' • v then
X := X'

return(v)

Figure 14: Stack

OP = {write(v)Iv E {0, 1}} U {read()}
RES = {0, 1, ack}
Object State:

X E {0, 1, 1.} initially 1_

read()
return(X)

write(v)

if X = _ then

X := v
return(ack)

Figure 15: Sticky-bit
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OP=I {read(i), writ e(v,i0, swapolv,i' E 10,1}}1
RES = {0, 1,ack}I
Object State:

Xo, X1 E f0, 1}

read(i)
if i = 0 then

return(Xo)
else return(Xi)

write(v, i)
if i =0 then

xo=V

else X, := v
return(ack)

swap()
temp = X

XO x,
X, temp

return(ack)

Figure 16: Swap
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OP = {test&seto, reseto}
RES ={0, 1,ack}
Object State:

X E 10,1}

test&set()
y := X
X :=O0
return( y)

reset()
X :=1I
return(ack)

Figure 17: Tost&set
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